1 |
ERROR DETECTION IN PRODUCTION LINES VIA DEPENDABLE ARCHITECTURES IN CONVOLUTIONAL NEURAL NETWORKSOlsson, Erik January 2023 (has links)
The need for products has increased during the last few years, this high demand needs to bemet with higher means of production. The use of neural networks can be the key to increasedproduction without having to compromise product quality or human workers well being. This thesislooks into the concept of reliable architectures in convolutional neural networks and how they canbe implemented. The neural networks are trained to recognize the features in images to identifycertain objects, these recognition is then compared to other models to see which of them had the bestprediction. Using multiple models creates a reliable architecture from which results can be produced,these results can then be used in combinations with algorithms to improve prediction certainty. Theaim of implementing the networks with these algorithms are to improve the results without havingto change the networks configurations.
|
2 |
Automatic Semantic Segmentation of Indoor DatasetsRachakonda, Sai Swaroop January 2024 (has links)
Background: In recent years, computer vision has undergone significant advancements, revolutionizing fields such as robotics, augmented reality, and autonomoussystems. Key to this transformation is Simultaneous Localization and Mapping(SLAM), a fundamental technology that allows machines to navigate and interactintelligently with their surroundings. Challenges persist in harmonizing spatial andsemantic understanding, as conventional methods often treat these tasks separately,limiting comprehensive evaluations with shared datasets. As applications continueto evolve, the demand for accurate and efficient image segmentation ground truthbecomes paramount. Manual annotation, a traditional approach, proves to be bothcostly and resource-intensive, hindering the scalability of computer vision systems.This thesis addresses the urgent need for a cost-effective and scalable solution byfocusing on the creation of accurate and efficient image segmentation ground truth,bridging the gap between spatial and semantic tasks. Objective: This thesis addresses the challenge of creating an efficient image segmentation ground truth to complement datasets with spatial ground truth. Theprimary objective is to reduce the time and effort taken for annotation of datasets. Method: Our methodology adopts a systematic approach to evaluate and combineexisting annotation techniques, focusing on precise object detection and robust segmentation. By merging these approaches, we aim to enhance annotation accuracywhile streamlining the annotation process. This approach is systematically appliedand evaluated across multiple datasets, including the NYU V2 dataset(consists ofover 1449 images), ARID(real-world sequential dataset), and Italian flats(sequentialdataset created in blender). Results: The developed pipeline demonstrates promising outcomes, showcasing asubstantial reduction in annotation time compared to manual annotation, thereby addressing the challenges posed by the cost and resource intensiveness of the traditionalapproach. We observe that although not initially optimized for SLAM datasets, thepipeline performs exceptionally well on both ARID and Italian flats datasets, highlighting its adaptability to real-world scenarios. Conclusion: In conclusion, this research introduces an innovative annotation pipeline,offering a systematic and efficient approach to annotation. It tries to bridge the gapbetween spatial and semantic tasks, addressing the pressing need for comprehensiveannotation tools in this domain.
|
3 |
A Novel Approach for Rice Plant Disease Detection, classification and localization using Deep Learning TechniquesVadrevu, Surya S V A S Sudheer January 2023 (has links)
Background. This Thesis addresses the critical issue of disease management in ricecrops, a key factor in ensuring both food security and the livelihoods of farmers. Objectives. The primary focus of this research is to tackle the often-overlooked challenge of precise disease localization within rice plants by harnessing the power of deep learning techniques. The primary goal is not only to classify diseases accurately but also to pinpoint their exact locations, a vital aspect of effective disease management. The research encompasses early disease detection, classification, andthe precise identification of disease locations, all of which are crucial components of a comprehensive disease management strategy. Methods. To establish the reliability of the proposed model, a rigorous validation process is conducted using standardized datasets of rice plant diseases. Two fundamental research questions guide this study: (1) Can deep learning effectively achieve early disease detection, accurate disease classification, and precise localizationof rice plant diseases, especially in scenarios involving multiple diseases? (2) Which deep learning architecture demonstrates the highest level of accuracy in both disease diagnosis and localization? The performance of the model is evaluated through the application of three deep learning architectures: Masked RCNN, YOLO V8, and SegFormer. Results. These models are assessed based on their training and validation accuracy and loss, with specific metrics as follows: For Masked RCNN, the model achieves a training accuracy of 91.25% and a validation accuracy of 87.80%, with corresponding training and validation losses of 0.3215 and 0.4426. YOLO V8 demonstrates a training accuracy of 85.50% and a validation accuracy of 80.20%, with training andvalidation losses of 0.4212 and 0.5623, respectively. SegFormer shows a training accuracy of 78.75% and a validation accuracy of 75.30%, with training and validation losses of 0.5678 and 0.6741, respectively. Conclusions. This research significantly contributes to the field of agricultural disease management, offering valuable insights that have the potential to enhance crop yield, food security, and the overall well-being of farmers
|
Page generated in 0.0257 seconds