• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular analysis of the yeast cell cycle : isolation and characterization of a new gene, TSM3721

Smith, Simon A. January 1988 (has links)
No description available.
2

Analysis and characterisation of the cdc2 gene region of fission yeast

Carr, A. M. January 1987 (has links)
No description available.
3

Translation during growth and starvation in Saccharomyces cerevisiae

Dickson, Lorna Mary January 1996 (has links)
The translation of a series of <I>cat </I>mRNAs containing either the <I>HSP26 </I>5'- leader or various artificial 5'-leaders (Vega Laso <I>et al., </I>1993) were analysed during growth. From this study, the relative translational efficiencies of these mRNAs were shown to vary from 2% to 100% during mid-exponential phase as observed previously (Vega Laso <I>et al.,</I>1993). However, upon analysing the translation of the various <I>cat </I>constructs during growth, their relative translational efficiencies did not change significantly as yeast cells approached stationary phase. A new set of <I>lacZ </I>mRNAs carrying different natural 5'-leaders (<I>PGK1, PYK1, RpL3, Rp29, GDH1, HSP26, HSP12 </I>and <I>TH14</I>) were constructed. These <I>lacZ </I>mRNAs were placed under the control of the promoters taken from genes expressed during different phases of growth (<I>PGK1 </I>and <I>HSP26</I>). Even though the various <I>PGK1-lacZ </I>and <I>HSP26-lacZ </I>mRNAs were translated differentially, the ability of these mRNAs to compete for the translational apparatus did not appear to change as cells entered stationary phase. The translation of a variety of natural mRNAs encoding a wide range of functions was then analysed by determining their polysomal distribution at various points during growth. Irrespective of the growth phase, a large proportion of each mRNA was detected in the polysomal fractions, suggesting that they continued to be translated in stationary phase. Overall, the data strongly suggest that, under the conditions tested, an excess translational capacity exists in stationary phase yeast cells. Hence gene expression may be largely regulated by transcription upon entry to stationary phase.
4

Negative regulators of gene expression in yeast : a1/α2 and SIR

Miller, Allan January 1987 (has links)
No description available.
5

A yeast gene that affects both nuclear import and export

Singleton, David Rivers January 1994 (has links)
No description available.

Page generated in 0.3579 seconds