• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Development of a Knowledge-Based Wax Deposition, Three Yield Stresses Model and Failure Mechanisms for Re-starting Petroleum Field Pipelines. Building on Chang and Boger’s Yield Stresses Model, Bidmus and Mehrotra’s Wax Deposition and Lee et al.’s Adhesive-Cohesive Failure Concepts to better Underpin Restart Operation of Waxy Crude Oil Pipelines

Fakroun, Abubaker A. January 2017 (has links)
Twenty years ago, Chang et al. (1998) introduced the three-yield stresses concept (dynamic, static and elastic limits) to describe yielding of waxy crude oils cooled below the wax appearance temperature (WAT). At the time, the limits in rheological instruments were such that they never actually measured the elastic-limit, a key fundamental property. Using modern instruments, this research succeeds in recording for the first time the entire yielding process down to stresses of 10-7 Pa and shear rate of 10-6 min-1 as a function of temperature, cooling rate and stress loading rate using two waxy oils of different origins and wax content. A four-yield stress model is established using derivative data (dynamic fluidity and failure acceleration). In addition, calorimetry (DSC) and microscopy (CPM) helped extract WAT, the gel and pour points and link gel crystal structure and its yielding and breakage to rheological properties. The yielding stresses measured rheologically were tested in laboratory pipelines at two diameter scales, 6.5mm and 13.5mm to compare stresses in uniform and non-uniform cooling. It is demonstrated that rheological instruments can only predict gel breaking pressure when the cooling rate is low, i.e. yielding at the pipe wall. A complementary heat transfer study was performed on a section of pipe statically cooled, both experimentally and theoretically to predict the gel front-liquid oil interface that develops in industrial pipeline where gel breaking occurs. This key information together with rheological data provide the means to predict accurately restart pressures of shut gelled pipelines that have eluded previous research. / Ministry of Higher Education of the Libyan Government

Page generated in 0.0966 seconds