Spelling suggestions: "subject:"yttrium diarium copper oxide"" "subject:"yttrium diarium copper óxide""
1 |
Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurementsRoth, Don Jeremy 13 June 2003 (has links)
No description available.
|
2 |
Development of 66 kV and 275 kV Class REBCO HTS Power CablesHayakawa, N., Ishiyama, A., Amemiya, N., Hasegawa, T., Saitoh, T., Yagi, M., Mukoyama, S., Ashibe, Y., Masuda, T., Okuma, T., Maruyama, O. 06 1900 (has links)
No description available.
|
3 |
Single fluxoid thermal smearing and the second peak in YBa₂Cu₃O₇ /Kornecki, Michael, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 87-88). Also available on the Internet.
|
4 |
Single fluxoid thermal smearing and the second peak in YBa₂Cu₃O₇Kornecki, Michael, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 87-88). Also available on the Internet.
|
5 |
Enhancing the Flux Pinning of High Temperature Superconducting Yttrium Barium Copper Oxide Thin FilmsSebastian, Mary Ann Patricia 28 August 2017 (has links)
No description available.
|
6 |
Fabrication of Josephson junctions using AFM nanolithographyElkaseh, Akram Abdulsalam 12 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / Dissertation presented for the degree of
Doctor of Philosophy in Engineering at the
University of Stellenbosch / ENGLISH ABSTRACT: Planar weak link structures, such as micro-bridges, variable thickness bridges and nanobridges,
have always attracted a lot of attention. Their potential to behave as real Josephson
elements make them useful devices, with numerous applications.
Powerful techniques, such as focused ion-beam and electron-beam lithography, were successfully
used and are well understood in planar weak link structure fabrication. In this
dissertation the results of an experimental study on planar weak link structures are presented.
For the first time these structures have been successfully fabricated using AFM
nanolithography on hard high-temperature superconducting YBCO tracks, where diamond
coated silicon tips were used as a ploughing tool.
Superconducting YBCO thin films were deposited on different substrates, using inverted
cylindrical magnetron sputtering. The films were used to fabricate micro-bridges, variable
thickness bridges and nano-bridges, by using conventional photolithography, argon ion-beam
milling and AFM nanolithography.
The measured I-V characteristics of the fabricated micro-bridges (width down to 1.9 µm),
variable thickness bridges (thickness down to 15 nm) and nano-bridge (width down to 490
nm) showed well defined DC and AC Josephson effect characteristics.
For better understanding of the behaviour of these types of weak links, critical current versus
temperature measurements, and magnetic field modulation of the critical current measurements,
were also performed, with the results and discussions given inside the chapters.
The major challenges that were experienced in the laboratory during the fabrication processes
and the operation of the fabricated devices are also discussed, with the solutions given
where appropriate. / AFRIKAANSE OPSOMMING: Swak-skakel vlakstrukture, soos mikrobr.ue, br.ue met veranderlike dikte en nanobr.ue, het
nog altyd baie aandag getrek. Hul het die potensiaal om soos werklike Josephson-elemente
te kan funksioneer en is, as gevolg hiervan, nuttige toestelle met veelvuldige toepassings.
Kragtige tegnieke, soos gefokuste ioonstraal- en elektronstraal litografie, is suksesvol gebruik
en word goed verstaan in die vervaardiging van swak-skakel vlakstrukture. In hierdie
proefskrif word die resultate van ¡¦n eksperimentele studie van swak-skakel vlakstrukture
voorgel.e.
Vir die eerste keer is hierdie strukture suksesvol vervaardig, deur gebruik te maak AFMnanolitografie
op harde, ho¡Le-temperatuur supergeleier YBCO (Yttrium Barium Koperoksied)
spore, waar diamantbedekte silikonpunte gebruik is as ploeginstrument.
¡¦n Dun lagie van supergeleidende YBCO is op verskillende substrate gedeponeer, deur gebruik
te maak van omgekeerde silindriese magnetron verstuiwing. Die dun lagies is gebruik
in die vervaardiging van mikrobr.ue, br.ue met veranderlike dikte en nanobr.ue, deur die
gebruik van gewone fotolitografie, argon-ioonstraal frees en AFM nanolitografie.
Die gemete I-V eienskappe van die vervaardigde mikrobr.ue (met breedte so laag as 1.9 µm),
veranderlike-dikte br.ue (dikte tot 15 nm) en nanobr.ue (breedte so min as 490 nm) toon
goed gedefinieerde GS en WS eienskappe van die Josephson-effek.
Ten einde die gedrag van hierdie tipes swak-skakels beter te kan verstaan, is metings gedoen
van kritieke stroom teenoor temperatuur, asook magnetiese veld modulasie van die kritieke
stroom. Hierdie resultate en besprekings daarvan word binne die toepaslike hoofstukke
aangebied.
Die grootste uitdagings wat in die laboratorium, sowel as met die toetsing van die vervaardigde
toestelle ondervind is, word ook bespreek. Waar moontlik, word toepaslike oplossings
voorgestel.
|
7 |
Development Of High Fill Factor And High Performance Uncooled Infrared Detector PixelsKucuk, Seniz Esra 01 September 2011 (has links) (PDF)
This thesis presents the design, fabrication and characterization of high performance and high fill factor surface micromachined uncooled infrared resistive microbolometer detectors which can be used in large format focal plane arrays (FPAs). The detector pixels, which have a pixel pitch of 25 &mu / m, are designed and fabricated as two-level structures using the enhanced sandwich type resistor while the active material is selected as Yttrium Barium Copper Oxide (YBCO). First level of the pixel structure is allocated for the formation of the support arms in order to obtain longer support arms hence lower thermal conductance values to get the desired high performance levels. The pixel body is built in the second level such that the fill factor and absorption of the detector is maximized. Structural and sacrificial layer thicknesses are also optimized in order to increase the absorption coefficient of the pixel in the 8-12 &mu / m wavelength range. The thermal simulations are conducted using finite element method (FEM) by CoventorWare software. The designed pixel has a fill factor of 92 % together with the thermal conductance and thermal time constant values calculated as 16.8 nW/K and 19.3 ms in the simulations, respectively.
The pixels are fabricated at METU MEMS facilities after the design of a CMOS compatible process flow. All process steps are optimized individually to obtain the expected high performance. Characterization step of the pixels includes the measurements of temperature coefficient of resistance (TCR), noise and thermal conductance value together with the thermal time constant. Effective TCR of the pixel is measured as -2.81 %/K for a pixel with a support arm resistance of 8 k&Omega / and total resistance of 55 k&Omega / . The corner frequency of 1/f noise in the pixel is 9.5 kHz and 1.4 kHz under 20 &mu / A and 10 &mu / A current bias, respectively. The total rms noise is 192 pA within 8.4 kHz bandwidth for a current bias of 20 &mu / A. Thermal conductance, Gth, of the pixel is measured as 17.4 nW/K with a time constant of 17.5 ms.
The measurement results indicate that the single pixels designed and fabricated in the scope of this thesis are applicable to large format FPAs in order to obtain a high performance imager. The expected NETD values are 33 mK and 36 mK for 384x288 and 640x480 format FPAs, respectively.
|
8 |
Studies On Superconucting, Metallic And Ferroelectric Oxide Thin Films And Their Heterostructures Grown By Pulsed Laser DepositionSatyalakshmi, K M 05 1900 (has links) (PDF)
No description available.
|
Page generated in 0.044 seconds