• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Results from the ZEPLIN-III experiment

Hollingsworth, Anthony January 2013 (has links)
The majority of matter in the Universe is dark. World wide efforts to understand this dark component of the Universe are underway and the current evidence suggests the existence of a non-relativistic, non-baryonic and weakly interacting massive particle (WIMP). This weakly interacting dark matter should occasionally couple to baryonic matter, primarily through nuclear interactions. The predicted event rates are low (< O(1) events/kg/day). The energy deposited is also expected to be low (<~ 50 keV), and so distinguishing a WIMP signal above the radioactive and cosmic backgrounds is a difficult challenge. The ZEPLIN{III device was designed to meet this challenge and achieve a competitive sensitivity to WIMP-nucleon interactions. The ZEPLIN{III detector is a two phase time projection chamber using liquid xenon as a target. The instrument was designed to detect dark matter by measuring scintillation and ionisation. Measuring two signals produced by incident radiation allows for discrimination between event types. This allows separation of the main component of the background radiation (primarily electron recoils) from any population of WIMP events that may be present in the data. The ZEPLIN-III detector completed its first science run in 2008, achieving a discrimination power of 1:7800 between nuclear and electron recoils, the highest of any liquid xenon detector. This result limited the WIMP-nucleon cross section to less than 8:4 X 10-8 pb at 90% confidence level (double sided) for a WIMP mass of 55 GeV/c2. The ZEPLIN-III detector then entered an upgrade phase. The two main improvements included the installation of a new ultra-low background PMT array, significantly reducing the main source of background events, and the addition of a veto detector. The veto detector significantly increased the detector's ability to reject WIMP-like background signals, which may be produced by background neutron events. The veto detector also aided background discrimination by detecting 28% of γ-ray events from the fiducial volume of ZEPLIN-III. The second science run of ZEPLIN-III began in June 2010 and continued until May 2011. During the second science run the discrimination power was 1:280 between nuclear and electron recoils. A total of 8 events were observed in the WIMP search region, which is consistent with background expectations. Assuming a null detection allowed the exclusion of the scalar cross-section above 4:8 10-8 pb near a WIMP mass of 51 GeV/c2. This result was combined with the result from a re-analysis of the first science run using more recent results for the relative scintillation yield, Leff, to give a total limit on the spin independent cross-section of 3:9 X 10-8 pb at 90% confidence near 52 GeV/c2 WIMP mass for the ZEPLIN-III experiment. The WIMP-neutron spin-dependent cross-section limit is 8:0 X 10-3 pb at 50 GeV/c2 at 90% confidence for the combined first and second science runs. At the time of publication, these were the world's second best, and best results, respectively.
2

Results from the ZEPLIN-III dark matter search experiment

Scovell, Paul Robert January 2011 (has links)
The existence of a significant non-baryonic component to the Universe is widely accepted, with worldwide efforts underway trying to detect this so-called dark matter. The ZEPLIN-III detector utilises liquid xenon (Xe) as a target medium in the search for the expected rare interactions of Weakly Interacting Massive Particles, or WIMPs, with ordinary baryonic matter. The neutralino, arising in supersymmetric extensions to the standard model of particle physics, provides a particularly well-motivated candidate. The ZEPLIN-III experiment, operating in two-phase (liquid/gas) mode, measures both the scintillation and ionisation signatures produced during an interaction. The first science run (FSR) of ZEPLIN-III was performed during three months in 2008. The run culminated in a published result which excluded a WIMP-nucleon interaction cross-section above 8:1 x 10-8 pb for a 60 GeVc-2 WIMP at the 90% confidence level. ZEPLIN-III then entered an upgrade period where the photomultiplier tube (PMT) array, previously the dominant source of background, was replaced with new, ultra-low background, PMTs. The radio-contamination of components used to make these PMTs has been thoroughly studied and their impact on the background rates in ZEPLIN-III characterised. Additionally, a new 1.5 tonne plastic scintillator veto detector was constructed, increasing the ability to reject WIMPlike signals caused by neutron induced nuclear recoil events and improving the γ-ray discrimination capability of ZEPLIN-III. The second science run (SSR) of ZEPLIN-III began in June 2010 and continued for 6 months, with a projected upper limit for the interaction cross-section of 1:52 x 10-8 pb for a 55 GeVc-2 WIMP at the 90% confidence level.

Page generated in 0.0647 seconds