• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification de la sumoylation de ZNF74 et de l'interaction de cette protéine à multidoigt de zinc avec UBC9 et PIAS1

Abenhaim, Samantha January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Étude du promoteur de ZNF74 et des séquences d'ADN reconnues par ce répresseur transcriptionnel

Bensmina, Imene January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Interactions protéiques et relation dynamique entre phosphorylation / sumoylation / ubiquitination des protéines TIF1α, β et PML: détection in vivo par BRET

Desprez, Delphine 08 1900 (has links)
Trois protéines de la famille TRIM (Motif TRIpartite), TIF1α, β (Transcriptional Intermediary Factor 1) et PML (ProMyelocytic Leukaemia¬), font l’objet de cette étude. TIF1α est connu comme un coactivateur des récepteurs nucléaires et TIF1β comme le corépresseur universel des protéines KRAB-multidoigt de zinc dont le prototype étudié ici est ZNF74. PML possède divers rôles dont le plus caractérisé est celui d’être l’organisateur principal et essentiel des PML-NBs (PML-Nuclear Bodies), des macrostructures nucléaires très dynamiques regroupant et coordonnant plus de 40 protéines. Il est à noter que la fonction de TIF1α, β et PML est régulée par une modification post-traductionnelle, la sumoylation, qui implique le couplage covalent de la petite protéine SUMO (Small Ubiquitin like MOdifier) à des lysines de ces trois protéines cibles. Cette thèse propose de développer des méthodes utilisant le BRET (Bioluminescence Resonance Energy Transfert) afin de détecter dans des cellules vivantes et en temps réel des interactions non-covalentes de protéines nucléaires mais aussi leur couplage covalent à SUMO. En effet, le BRET n’a jamais été exploré jusqu’alors pour étudier les interactions non-covalentes et covalentes de protéines nucléaires. L’étude de l’interaction de protéines transcriptionnellement actives est parfois difficile par des méthodes classiques du fait de leur grande propension à agréger (famille TRIM) ou de leur association à la matrice nucléaire (ZNF74). L’homo et l’hétérodimérisation de TIF1α, β ainsi que leur interaction avec ZNF74 sont ici testées sur des protéines entières dans des cellules vivantes de mammifères répondant aux résultats conflictuels de la littérature et démontrant que le BRET peut être avantageusement utilisé comme alternative aux essais plus classiques basés sur la transcription. Du fait de l’hétérodimérisation confirmée de TIF1α et β, le premier article présenté ouvre la possibilité d’une relation étroite entre les récepteurs nucléaires et les protéines KRAB- multidoigt de zinc. Des études précédentes ont démontré que la sumoylation de PML est impliquée dans sa dégradation induite par l’As2O3 et dépendante de RNF4, une E3 ubiquitine ligase ayant pour substrat des chaînes de SUMO (polySUMO). Dans le second article, grâce au développement d’une nouvelle application du BRET pour la détection d’interactions covalentes et non-covalentes avec SUMO (BRETSUMO), nous établissons un nouveau lien entre la sumoylation de PML et sa dégradation. Nous confirmons que le recrutement de RNF4 dépend de SUMO mais démontrons également l’implication du SBD (Sumo Binding Domain) de PML dans sa dégradation induite par l’As2O3 et/ou RNF4. De plus, nous démontrons que des sérines, au sein du SBD de PML, qui sont connues comme des cibles de phosphorylation par la voie de la kinase CK2, régulent les interactions non-covalentes de ce SBD mettant en évidence, pour la première fois, que les interactions avec un SBD peuvent dépendre d’un évènement de phosphorylation (“SBD phospho-switch”). Nos résultats nous amènent à proposer l’hypothèse que le recrutement de PML sumoylé au niveau des PML-NBs via son SBD, favorise le recrutement d’une autre activité E3 ubiquitine ligase, outre celle de RNF4, PML étant lui-même un potentiel candidat. Ceci suggère l’existence d’une nouvelle relation dynamique entre phosphorylation, sumoylation et ubiquitination de PML. Finalement, il est suggéré que PML est dégradé par deux voies différentes dépendantes de l’ubiquitine et du protéasome; la voie de CK2 et la voie de RNF4. Enfin une étude sur la sumoylation de TIF1β est également présentée en annexe. Cette étude caractérise les 6 lysines cibles de SUMO sur TIF1β et démontre que la sumoylation est nécessaire à l’activité répressive de TIF1β mais n’est pas impliquée dans son homodimérisation ou son interaction avec la boîte KRAB. La sumoylation est cependant nécessaire au recrutement d’histones déacétylases, dépendante de son homodimérisation et de l’intégrité du domaine PHD. Alors que l’on ne connaît pas de régulateur physiologique de la sumoylation outre les enzymes directement impliquées dans la machinerie de sumoylation, nous mettons en évidence que la sumoylation de TIF1β est positivement régulée par son interaction avec le domaine KRAB et suggérons que ces facteurs transcriptionnels recrutent TIF1β à l’ADN au niveau de promoteur et augmentent son activité répressive en favorisant sa sumoylation. / Three TRIM proteins (TRIpartite Motif), TIF1α, β (Transcriptional Intermediary Factor 1) and PML (ProMyelocytic Leukaemia¬), were studied in this thesis. TIF1α is a nuclear receptor coactivator and TIF1β is the universal corepressor of the KRAB-zinc finger repressor family of which, ZNF74 is studied here as a prototypic member. PML functions as a tumor suppressor and is the essential organiser of PML-NBs (PML-Nuclear Bodies) which are very dynamic nuclear macrostructures containing more than 40 proteins. The function of these three TRIM proteins is regulated by sumoylation, a post-translational modification involving the covalent linkage of SUMO (Small Ubiquitin like MOdifier) to specific targets lysine. In this thesis, we propose to develop new methods based on BRET (Bioluminescence Resonance Energy Transfer) to detect non-covalent nuclear protein interactions but also covalent linkage to SUMO in real time in living cells. To date, BRET was never used to assess non-covalent or covalent nuclear protein interactions. Studying transcriptionally active protein interactions represents a challenge by classical methods in particular when proteins have a tendency to aggregate (TRIM family) or when characterizing nuclear matrix proteins (ZNF74). In the first article, homo- and heterodimerisation of TIF1 α and β as well as their interaction with ZNF74 was assessed by BRET using full length proteins in living mammalian cells. We ascertained the heterodimerisation of TIF1α and β. Whereas ZNF74 interacts strongly with TIF1β, no interaction was detected with TIF1α. However, we unravelled the existence of ternary complexes involving ZNF74, TIF1α and TIF1β. This suggested that a mechanisms for cross-talk between nuclear receptors and KRAB-zinc finger proteins. Thus, we showed that BRET can be advantageously used as a non-transcription-based interaction system for studying transcriptionally active proteins, including nuclear matrix proteins, in living cells. Previous studies have shown that the sumoylation of PML (a tumour suppressor) is involved in its proteasome degradation that is As2O3-inducible and dependent on the polySUMO E3 ubiquitin ligase, RNF4. In the second article, we describe the development of a new application of the BRET method for the detection of covalent and non-covalent interactions with SUMO. Owing to this SUMO BRET assay, we established that the As2O3 / RNF4-mediated degradation of PML, not only depends on PML sumoylation as previously demonstrated, but also on the integrity of its SUMO binding domain. We also demonstrated that As2O3 which increases PML sumoylation, also enhances PML / RNF4 interaction. Our study revealed that most PML SBD non covalent interactions with sumoylated proteins required the phosphorylation of serines within PML SBD that were previously described as target sites for CK2 kinase and involved in PML degradation. Despites the involvement of PML SBD in RNF4-mediated degradation, these serines which function as an SBD phospho-switch, were not required for RNF4-mediated degradation. This suggested that CK2- and RNF4-mediated PML degradation represents two distinct pathways triggering PML ubiquitin / proteasome-dependent degradation. At last, our study led to the hypothesis that the recruitment of sumoylated PML at PML-Nuclear Bodies subnuclear structures via the PML SBD and / or possibly an E3 ubiquitin ligase activity other than RNF4 (PML itself being candidate) may favour PML degradation. Our study also stresses the dynamic involvement of three PML post-translational modifications, phosphorylation, sumoylation and ubiquitination in its degradation. A third article addressing the role of TIF1β sumoylation is presented in the Appendix. We characterized the 6 SUMO targets lysine of TIF1β and demonstrated that sumoylation is required for TIF1β transcriptional repressive activity. This is in part explained by the fact that TIF1β sumoylation is a pre-requisite for histone deacetylases recruitment since TIF1β repressive activity is partly dependent on histone deacetylases. We found that TIF1β sumoylation does not influence its homodimerisation or interaction with the KRAB box of KRAB zinc finger proteins recruiting TIF1β to promoters. TIF1β sumoylation is however relying on the integrity of TIF1β PHD finger and on its self-oligomerisation. Interestingly, we demonstrated that TIF1β sumoylation is positively regulated by its interaction with KRAB domain. It is thus suggested that KRAB-zinc finger proteins recruit TIF1β at DNA promoters where they trigger increase of TIF1β sumoylation and thus enhance its repressive activity.
4

Interactions protéiques et relation dynamique entre phosphorylation / sumoylation / ubiquitination des protéines TIF1α, β et PML: détection in vivo par BRET

Desprez, Delphine 08 1900 (has links)
Trois protéines de la famille TRIM (Motif TRIpartite), TIF1α, β (Transcriptional Intermediary Factor 1) et PML (ProMyelocytic Leukaemia¬), font l’objet de cette étude. TIF1α est connu comme un coactivateur des récepteurs nucléaires et TIF1β comme le corépresseur universel des protéines KRAB-multidoigt de zinc dont le prototype étudié ici est ZNF74. PML possède divers rôles dont le plus caractérisé est celui d’être l’organisateur principal et essentiel des PML-NBs (PML-Nuclear Bodies), des macrostructures nucléaires très dynamiques regroupant et coordonnant plus de 40 protéines. Il est à noter que la fonction de TIF1α, β et PML est régulée par une modification post-traductionnelle, la sumoylation, qui implique le couplage covalent de la petite protéine SUMO (Small Ubiquitin like MOdifier) à des lysines de ces trois protéines cibles. Cette thèse propose de développer des méthodes utilisant le BRET (Bioluminescence Resonance Energy Transfert) afin de détecter dans des cellules vivantes et en temps réel des interactions non-covalentes de protéines nucléaires mais aussi leur couplage covalent à SUMO. En effet, le BRET n’a jamais été exploré jusqu’alors pour étudier les interactions non-covalentes et covalentes de protéines nucléaires. L’étude de l’interaction de protéines transcriptionnellement actives est parfois difficile par des méthodes classiques du fait de leur grande propension à agréger (famille TRIM) ou de leur association à la matrice nucléaire (ZNF74). L’homo et l’hétérodimérisation de TIF1α, β ainsi que leur interaction avec ZNF74 sont ici testées sur des protéines entières dans des cellules vivantes de mammifères répondant aux résultats conflictuels de la littérature et démontrant que le BRET peut être avantageusement utilisé comme alternative aux essais plus classiques basés sur la transcription. Du fait de l’hétérodimérisation confirmée de TIF1α et β, le premier article présenté ouvre la possibilité d’une relation étroite entre les récepteurs nucléaires et les protéines KRAB- multidoigt de zinc. Des études précédentes ont démontré que la sumoylation de PML est impliquée dans sa dégradation induite par l’As2O3 et dépendante de RNF4, une E3 ubiquitine ligase ayant pour substrat des chaînes de SUMO (polySUMO). Dans le second article, grâce au développement d’une nouvelle application du BRET pour la détection d’interactions covalentes et non-covalentes avec SUMO (BRETSUMO), nous établissons un nouveau lien entre la sumoylation de PML et sa dégradation. Nous confirmons que le recrutement de RNF4 dépend de SUMO mais démontrons également l’implication du SBD (Sumo Binding Domain) de PML dans sa dégradation induite par l’As2O3 et/ou RNF4. De plus, nous démontrons que des sérines, au sein du SBD de PML, qui sont connues comme des cibles de phosphorylation par la voie de la kinase CK2, régulent les interactions non-covalentes de ce SBD mettant en évidence, pour la première fois, que les interactions avec un SBD peuvent dépendre d’un évènement de phosphorylation (“SBD phospho-switch”). Nos résultats nous amènent à proposer l’hypothèse que le recrutement de PML sumoylé au niveau des PML-NBs via son SBD, favorise le recrutement d’une autre activité E3 ubiquitine ligase, outre celle de RNF4, PML étant lui-même un potentiel candidat. Ceci suggère l’existence d’une nouvelle relation dynamique entre phosphorylation, sumoylation et ubiquitination de PML. Finalement, il est suggéré que PML est dégradé par deux voies différentes dépendantes de l’ubiquitine et du protéasome; la voie de CK2 et la voie de RNF4. Enfin une étude sur la sumoylation de TIF1β est également présentée en annexe. Cette étude caractérise les 6 lysines cibles de SUMO sur TIF1β et démontre que la sumoylation est nécessaire à l’activité répressive de TIF1β mais n’est pas impliquée dans son homodimérisation ou son interaction avec la boîte KRAB. La sumoylation est cependant nécessaire au recrutement d’histones déacétylases, dépendante de son homodimérisation et de l’intégrité du domaine PHD. Alors que l’on ne connaît pas de régulateur physiologique de la sumoylation outre les enzymes directement impliquées dans la machinerie de sumoylation, nous mettons en évidence que la sumoylation de TIF1β est positivement régulée par son interaction avec le domaine KRAB et suggérons que ces facteurs transcriptionnels recrutent TIF1β à l’ADN au niveau de promoteur et augmentent son activité répressive en favorisant sa sumoylation. / Three TRIM proteins (TRIpartite Motif), TIF1α, β (Transcriptional Intermediary Factor 1) and PML (ProMyelocytic Leukaemia¬), were studied in this thesis. TIF1α is a nuclear receptor coactivator and TIF1β is the universal corepressor of the KRAB-zinc finger repressor family of which, ZNF74 is studied here as a prototypic member. PML functions as a tumor suppressor and is the essential organiser of PML-NBs (PML-Nuclear Bodies) which are very dynamic nuclear macrostructures containing more than 40 proteins. The function of these three TRIM proteins is regulated by sumoylation, a post-translational modification involving the covalent linkage of SUMO (Small Ubiquitin like MOdifier) to specific targets lysine. In this thesis, we propose to develop new methods based on BRET (Bioluminescence Resonance Energy Transfer) to detect non-covalent nuclear protein interactions but also covalent linkage to SUMO in real time in living cells. To date, BRET was never used to assess non-covalent or covalent nuclear protein interactions. Studying transcriptionally active protein interactions represents a challenge by classical methods in particular when proteins have a tendency to aggregate (TRIM family) or when characterizing nuclear matrix proteins (ZNF74). In the first article, homo- and heterodimerisation of TIF1 α and β as well as their interaction with ZNF74 was assessed by BRET using full length proteins in living mammalian cells. We ascertained the heterodimerisation of TIF1α and β. Whereas ZNF74 interacts strongly with TIF1β, no interaction was detected with TIF1α. However, we unravelled the existence of ternary complexes involving ZNF74, TIF1α and TIF1β. This suggested that a mechanisms for cross-talk between nuclear receptors and KRAB-zinc finger proteins. Thus, we showed that BRET can be advantageously used as a non-transcription-based interaction system for studying transcriptionally active proteins, including nuclear matrix proteins, in living cells. Previous studies have shown that the sumoylation of PML (a tumour suppressor) is involved in its proteasome degradation that is As2O3-inducible and dependent on the polySUMO E3 ubiquitin ligase, RNF4. In the second article, we describe the development of a new application of the BRET method for the detection of covalent and non-covalent interactions with SUMO. Owing to this SUMO BRET assay, we established that the As2O3 / RNF4-mediated degradation of PML, not only depends on PML sumoylation as previously demonstrated, but also on the integrity of its SUMO binding domain. We also demonstrated that As2O3 which increases PML sumoylation, also enhances PML / RNF4 interaction. Our study revealed that most PML SBD non covalent interactions with sumoylated proteins required the phosphorylation of serines within PML SBD that were previously described as target sites for CK2 kinase and involved in PML degradation. Despites the involvement of PML SBD in RNF4-mediated degradation, these serines which function as an SBD phospho-switch, were not required for RNF4-mediated degradation. This suggested that CK2- and RNF4-mediated PML degradation represents two distinct pathways triggering PML ubiquitin / proteasome-dependent degradation. At last, our study led to the hypothesis that the recruitment of sumoylated PML at PML-Nuclear Bodies subnuclear structures via the PML SBD and / or possibly an E3 ubiquitin ligase activity other than RNF4 (PML itself being candidate) may favour PML degradation. Our study also stresses the dynamic involvement of three PML post-translational modifications, phosphorylation, sumoylation and ubiquitination in its degradation. A third article addressing the role of TIF1β sumoylation is presented in the Appendix. We characterized the 6 SUMO targets lysine of TIF1β and demonstrated that sumoylation is required for TIF1β transcriptional repressive activity. This is in part explained by the fact that TIF1β sumoylation is a pre-requisite for histone deacetylases recruitment since TIF1β repressive activity is partly dependent on histone deacetylases. We found that TIF1β sumoylation does not influence its homodimerisation or interaction with the KRAB box of KRAB zinc finger proteins recruiting TIF1β to promoters. TIF1β sumoylation is however relying on the integrity of TIF1β PHD finger and on its self-oligomerisation. Interestingly, we demonstrated that TIF1β sumoylation is positively regulated by its interaction with KRAB domain. It is thus suggested that KRAB-zinc finger proteins recruit TIF1β at DNA promoters where they trigger increase of TIF1β sumoylation and thus enhance its repressive activity.

Page generated in 0.0362 seconds