• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

First-arrival traveltime tomography of active-source data in the Kansanshi copper mine, northern Zambia / Seismisk tomografi baserad på ankomsttider av de först anländande vågorna från aktiva källor i Kansanshi koppargruva, norra Zambia

Hobson, Vessela January 2019 (has links)
Sedimentary rock-hosted deposits are a major source of copper and cobalt, with the Neoproterozoic central African Copperbelt being among the largest Cu-Co provinces in the world, accounting for around 15% of its copper resource. The deposits occur primarily in the carbonates and siliciclastic sediments overlying the basement, and formed during early diagenesis (around 820 Ma) and late diagenesis/metamorphism during the Pan-African Orogeny (580-520 Ma). The northwest province of Zambia hosts three major copper deposits, amongst which is Kansanshi: the focus of this study. The deposit, which lies north of the Solwezi dome, is hosted within the Katangan Supergroup, particularly within the carbonaceous phyllites and porphyroblastic schists of the Mshwaya subgroup and lower Nguba Group and extends along the strike length of the North-West trending Kansanshi antiform. In this study, tomographic inversion is applied to first arrival refraction data collected at the Kansanshi Copper Mine with the aim of locating potential copper-bearing structures.  The survey was carried out using both dynamite and VIBSIST sources along 3 profiles; 2 trending North-East across the Kansanshi anticline and 1 trending north-west parallel to it. Seismic refraction tomography is an excellent tool for investigating the shallow subsurface, providing a velocity distribution. Unlike conventional refraction seismics, it allows for the velocity calculation of each cell in a non-homogeneous earth model, rather than just the average velocity of individual layers - allowing us to map structure and infer geological units and weathering profiles. The data highlights abundant faulting and varying depth to fresh bedrock. The various lithologies have also been interpreted.
2

Environmentální charakteristiky minerálních odpadů z metalurgie / Environmental characteristics of mineral waste from metallurgy

Vítková, Martina January 2013 (has links)
Mineralogical and geochemical characteristics of metallurgical wastes from the Cu-Co smelters situated in the Zambian Copperbelt have been investigated. A number of instrumental analytical methods (XRD, SEM/EDS, EPMA, TEM/EDS) has been used to identify primary and secondary phases in smelter slags and dusts. A set of leaching experiments (CEN/TS 14997 pH-static test, EN 12457 batch test) in combination with geochemical modelling has been performed, with the emphasis on the leaching behaviour of potential contaminants and their release as a function of the pH. The effect of sample preparation on metal leachability from slag was also evaluated, considering the grain size reduction required by the standardised leaching protocols. Environmental and health risk assessments of the dust samples have been performed. It was shown that the main carriers of metals in the studied slags were Cu sulphides (bornite, digenite, chalcocite), Co sulphides (cobaltpentlandite), Co-bearing intermetallic phases and alloys. Copper and cobalt were detected in major silicates and spinels, substituting for Fe or Mg in their structures, and in glass. The presence of secondary metal-bearing phases observed on the slag surfaces indicated the reactivity of the slags on contact with water/atmosphere. It was reported that in...

Page generated in 0.0356 seconds