• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proteins in gymnosperm pollination drops.

Prior, Natalie Annastasia 18 December 2014 (has links)
Most gymnosperms produce a pollination drop that captures and transports pollen into the ovule. Pollination drops have other functions. These include influencing pollen germination and pollen tube growth, defending the ovule from pathogens and providing a food reward in insect-pollinated gymnosperms. Mineral and organic molecules, including proteins, are responsible for these additional functions. To date, pollination drops from a handful of conifers and one non-conifer gymnosperm, Welwitschia mirabilis, have been subjected to proteomic analysis. In the present study, tandem mass spectrometry was used to detect proteins in all gymnosperm lineages: cycads (Ceratozamia hildae, Cycas rumphii, Zamia furfuracea); Gnetales (Ephedra compacta, E. distachya, E. foeminea, E. likiangensis, E. minuta, E. monosperma, E. trifurca; Gnetum gnemon; Welwitschia mirabilis); Ginkgo biloba; conifers (Taxus x media). PEAKS 6 DB (Bioinformatics Solutions, Waterloo, ON, Canada) was used to make protein identifications. Proteins were detected in all gymnosperm species analyzed. The numbers of proteins identified varied between samples as follows: one protein in Welwitschia female; nine proteins in Cycas rumphii; 13 proteins on average in Ephedra spp.; 17 proteins in Gnetum gnemon; 38 proteins on average in Zamia furfuracea; 57 proteins in Ginkgo biloba; 61 proteins in Ceratozamia hildae; 63 in Taxus x media; 138 proteins in Welwitschia male. The types of proteins identified varied widely. Proteins involved in carbohydrate modification, e.g. galactosidase, chitinase, glycosyl hydrolase, glucosidase, were present in most gymnosperms. Similarly, defence proteins, e.g. reduction-oxidation proteins, lipid-transfer proteins and thaumatin-like proteins, were identified in many gymnosperms. Gymnosperms that develop a deep pollen chamber as the nucellus degrades, e.g., cycads, Ginkgo, Ephedra, generally contained higher proportions of proteins localized to intracellular spaces. These proteins represent the pollination drop degradome. Gymnosperms that either lack a pollen chamber, e.g. Taxus, or have a shallow pollen chamber, e.g. Gnetum, had greater proportions of extracellular proteins. These proteins represent the pollination drop secretome. Our proteomic analyses support the hypothesis that the pollination drops of all extant gymnosperms constitute complex reproductive secretions. / Graduate
2

Effects of habitat degradation on the evolutionary dynamics of populations in a rainforest cycad (Gymnospermae)

Lopez-Gallego, Cristina 18 May 2007 (has links)
In addition to habitat loss and fragmentation, habitat degradation can have important consequences for biodiversity and population persistence, including effects on ecological and genetic processes beyond decreased demographic viability and the loss of genetic variation. Particularly interesting is the potential for evolutionary changes and adaptation to degraded habitats, that can affect population viability even in the short-term. Here, I explore how environmental changes after habitat degradation affect the evolutionary dynamics of populations of the rainforest cycad Zamia fairchildiana, specifically how habitat degradation affects gene dispersal, inbreeding, directional selection, and genotype-by-environment interactions, and the potential for genetic differentiation between populations. Colonies of Z. fairchildiana showed little genetic differentiation in neutral molecular markers across study sites, thus can be considered as subpopulations. Subpopulations in the disturbed habitat are experiencing different environmental conditions when compared to subpopulation in their native habitat. Disturbed-habitat subpopulations showed a faster life-history. This faster life history is associated with a weaker spatial genetic structure and higher levels of inbreeding in the disturbed-habitat subpopulations. In addition, higher light availability in the disturbed habitat seems to be a major agent of selection on traits like leaf production that have the potential to respond to selection in these subpopulations. Different traits were under selection in the native-habitat subpopulations, suggesting the potential for genetic differentiation between native and disturbed-habitat subpopulations. Genotype by environment interactions in seed germination and seedling survival, in response to light and water availability, further suggested that subpopulations can adaptively diverge between habitats, but the relative role of genetic and environmental factors, particularly maternal effects, on the magnitude and rate of genetic differentiation between subpopulations remains to be evaluated. These results suggest that habitat degradation can have important consequences for the evolutionary dynamics of populations of this cycad, not necessarily typical of habitat loss and fragmentation. This study identified factors and processes important for population persistence in degraded habitats, but population responses to habitat degradation are complex. Thus further studies and long-term experiments are required for better understanding the effects of habitat degradation on population viability.

Page generated in 0.0191 seconds