Spelling suggestions: "subject:"zeeman effect."" "subject:"seeman effect.""
11 |
Resonant spin Hall effect in two-dimensional electron systemsBao, Yunjuan. January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
12 |
Investigation of the selfpressure broadening of the Ne [Lambda] 6074.3 A° line profile by Zeeman scanningBurnett, John Crawford Duncan January 1969 (has links)
The shape of the Ne.λ6074.3 A° absorption line profile has been investigated using the Zeeman scanning technique.
Neon glow discharges at three pressures, 2 Torr, 50 Torr, and 100 Torr, were used as absorbers while a 2 Torr Geissler tube was used as the source. The self-pressure broadening of the observed line was clearly observed and the rate of broadening compares well with theoretical estimates made from the impact theory with a van der Waals interaction assumed.
No shift was detected, in contradiction to the theory. This lack of shift, and the rate of pressure broadening observed, were in agreement with the results of Smith (14) regarding the shift and broadening of the Ca.λ6573 A° line by neon. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
13 |
A study of magnetic, line-blanketed model atmospheres /Carpenter, Kenneth George January 1983 (has links)
No description available.
|
14 |
An investigation of the effects of Zeeman modulation on nuclear guadrupole resonance line shapeHennen, Robert W. 03 June 2011 (has links)
This thesis includes introductions into the theory of nuclear quadrupole resonance (NQR) detection, a brief history of early developments in NQR, and the basic theory of Zeeman modulation and its effects upon NQR line shapes. A brief description of the individual pieces of apparatus and their contribution to the detection and recording of resonance signals is also included. The primary purpose of this research was to determine those parameters for operation of the apparatus which optimize recorded NQR signals from linear chlorinated compounds. Finally, the determination of the apparatus parameters for the four different compounds are summarized within this thesis.Ball State UniversityMuncie, IN 47306
|
15 |
Resonant spin Hall effect in two-dimensional electron systemsBao, Yunjuan., 暴云娟. January 2005 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
|
16 |
MAGNETIC FIELDS IN THE GALAXYMayo, Elizabeth Ann 01 January 2008 (has links)
The object of this dissertation is to provide an observational study of the effects of interstellar magnetic fields on star-formation regions. This is part of a long-standing research project that uses the techniques of radio astronomy to measure magnetic field strengths in the interstellar medium of our galaxy. Interstellar magnetic fields are believed to play a crucial role in the star-formation process therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. The regions observed include the giant molecular clouds and star-forming regions of Cygnus X and NGC 6334. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (based on studies by Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them.
|
17 |
Spin-1 atomic condensates in magnetic fieldsZhang, Wenxian. January 2005 (has links)
Thesis (Ph. D.)--Physics, Georgia Institute of Technology, 2006. / Z. John Zhang, Committee Member ; Mei-Yin Chou, Committee Member ; Chandra Raman, Committee Member ; Michael S. Chapman, Committee Member ; Li You, Committee Chair. Vita. Includes bibliographical references.
|
18 |
MAGNETIC FIELDS AND OTHER PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUMKiuchi, Furea 01 January 2012 (has links)
This document consists of two very different projects but the common thread is in the interest of magnetic fields. It describes the effect of magnetic fields in two Interstellar Medium regions in the Galaxy. Electromagnetic force is one of the four fundamental forces in physics. It is not known where magnetic field has initially risen in the Universe, but what is certain is that it has significant effect in the dynamics of star formation and galaxy formation. The studies aim to better understand the effects of field in an active star forming region and in the halo of the Galaxy. We observed the HI 21 cm spectral line via the Zeeman effect in attempt to detect line-of-sight magnetic field strengths in both of the projects. For the star forming region project in Chapter 2, towards the Eagle Nebula, an upper limit of the field strength was determined. From the observational results, physical conditions of the region were modeled. For the second project in Chapter 3, we attempted to detect magnetic fields via Zeeman effect towards non galactic disk objects. All of the observed positions have radial velocities that cannot be explained by the simple galactic rotation. Hence, they are considered to be non galactic disk sources and often grouped as High Velocity Clouds. With a unique observational technique and analysis, we derived the best fit line-of-sight magnetic fields. A particular interest to us is the Smith Cloud. From the detection of magnetic field, we attempted to estimate the density of the ambient medium in the halo, which will be useful for studying the galaxy formation.
|
19 |
ZEEMAN EFFECT STUDIES OF MAGNETIC FIELDS IN THE MILKY WAYThompson, Kristen Lynn 01 January 2012 (has links)
The interstellar medium (ISM) of our Galaxy, and of others, is pervaded by ultra low-density gas and dust, as well as magnetic fields. Embedded magnetic fields have been known to play an important role in the structure and dynamics of the ISM. However, the ability to accurately quantify these fields has plagued astronomers for many decades. Unfortunately, the experimental techniques for measuring the strength and direction of magnetic fields are few, and they are observationally challenging. The only direct method of measuring the magnetic field is through the Zeeman effect.
The goal of this dissertation is to expand upon the current observational studies and understanding of the effects of interstellar magnetic fields across various regions of the Galaxy. Zeeman effect observations of magnetic fields in two dynamically diverse environments in the Milky Way are presented: (1) An OH and HI absorption line study of envelopes of molecular clouds distributed throughout the Galaxy, and (2) A study of OH absorption lines toward the Galactic center region in the vicinity of the supermassive black hole Sgr A*.
We have executed the first systematic observational survey designed to determine the role of magnetic fields in the inter-core regions of molecular clouds. Observations of extragalactic continuum sources that lie along the line-of-sight passing through Galactic molecular clouds were studied using the Arecibo telescope. OH Zeeman effect observations were combined with estimates of column density to allow for computation of the mass-to-flux ratio, a measurement of the gravitational to magnetic energies within a cloud. We find that molecular clouds are slightly subcritical overall. However, individual measurements yield the first evidence for magnetically subcritical molecular gas.
Jansky VLA observations of 18 cm OH absorption lines were used to determine the strength of the line-of-sight magnetic field in the Galactic center region. This study yields no clear detections of the magnetic field and results that differ from a similar study by Killeen, Lo, & Crutcher (1992). Our results suggest magnetic fields no more than a few microgauss in strength.
|
20 |
Perpendicular And Parallel Field Magnetoresistance In Molecular Beam Epitaxy Grown Bi2Te3Dey, Rik 18 September 2014 (has links)
The topological insulator Bi2Te3 has been grown on Si(111)-(7 × 7) surface by molecular beam epitaxy. Reflection high energy electron diffraction, in situ scanning tunnelling microscopy, x-ray photoelectron spectroscopy and ex situ x-ray diffraction studies have been performed to analyze the quality of the growth. These analyses suggest a very good layer-by-layer epitaxial growth of Bi2Te3 on the atomically at Si surface. The magnetoresistance of the samples has been studied with magnetic field perpendicular and parallel to the sample surface, up to 9 T, over a temperature range of 2 K to 20 K. A sharp dip at low fields (0 T - 1 T) and near-linear behavior for high fields (> 4 T) have been observed in the perpendicular field magnetoresistance. The low field dip is due to weak antilocalization that agrees well with the simplified Hikami-Larkin-Nagaoka model. It has been demonstrated that both the low field dip and the high field near-linear behavior can be explained by the original Hikami-Larkin-Nagaoka formula alone in a system with strong spin-orbit coupling. From the fitting of the perpendicular field magnetoresistance the phase coherence length, the mean free path and the spin-orbit relaxation time have been estimated. The phase coherence length shows power law dependence with temperature indicating two dimensional nature of the transport. The power law also suggests electron electron interaction as the prominent dephasing mechanism. The out-of-plane spin-orbit relaxation time is determined to be small and the in-plane spin-orbit relaxation time is found to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters is useful for topological insulator based magneto electric device applications. It also has been shown that the strong spin-orbit coupling suppresses the Zeeman contribution in perpendicular field magnetoresistance. The logarithmic divergence of perpendicular field magnetoresistance with temperature for low temperature range (2 K - 20 K) at high fields shows the presence of Coulomb interaction in the spin singlet channel. For magnetoresistance with the field parallel to the sample surface, the observed magnetoresistance has parabolic dependence for small fields (0 T - 0.6 T) and logarithmic dependence for large fields (> 3 T), which is due to the Zeeman effect. It is found that the data are inconsistent with only the Maekawa and Fukuyama theory of non interacting electrons with Zeeman contributions to the transport, but are consistent with theory if one also takes into account the electron electron interaction and the Zeeman splitting term in the electron electron interaction theory of Lee and Ramakrishnan. The Zeeman g-factor and the strength of Coulomb scattering due to electron electron interaction have been estimated from fitting of the parallel field magnetoresistance. The magnetoresistance also shows anisotropy with respect to the field directions. The angle dependent anisotropic magnetoresistance can be fitted well by the original HLN theory alone. The anisotropy can have potential application in anisotropic magnetic sensors. / text
|
Page generated in 0.0539 seconds