Spelling suggestions: "subject:"zellsegmentierung"" "subject:"bildsegmentierung""
1 |
Towards Accurate and Efficient Cell Tracking During Fly Wing DevelopmentBlasse, Corinna 05 December 2016 (has links) (PDF)
Understanding the development, organization, and function of tissues is a central goal in developmental biology. With modern time-lapse microscopy, it is now possible to image entire tissues during development and thereby localize subcellular proteins. A particularly productive area of research is the study of single layer epithelial tissues, which can be simply described as a 2D manifold. For example, the apical band of cell adhesions in epithelial cell layers actually forms a 2D manifold within the tissue and provides a 2D outline of each cell. The Drosophila melanogaster wing has become an important model system, because its 2D cell organization has the potential to reveal mechanisms that create the final fly wing shape. Other examples include structures that naturally localize at the surface of the tissue, such as the ciliary components of planarians.
Data from these time-lapse movies typically consists of mosaics of overlapping 3D stacks. This is necessary because the surface of interest exceeds the field of view of todays microscopes. To quantify cellular tissue dynamics, these mosaics need to be processed in three main steps: (a) Extracting, correcting, and stitching individ- ual stacks into a single, seamless 2D projection per time point, (b) obtaining cell characteristics that occur at individual time points, and (c) determine cell dynamics over time. It is therefore necessary that the applied methods are capable of handling large amounts of data efficiently, while still producing accurate results. This task is made especially difficult by the low signal to noise ratios that are typical in live-cell imaging.
In this PhD thesis, I develop algorithms that cover all three processing tasks men- tioned above and apply them in the analysis of polarity and tissue dynamics in large epithelial cell layers, namely the Drosophila wing and the planarian epithelium. First, I introduce an efficient pipeline that preprocesses raw image mosaics. This pipeline accurately extracts the stained surface of interest from each raw image stack and projects it onto a single 2D plane. It then corrects uneven illumination, aligns all mosaic planes, and adjusts brightness and contrast before finally stitching the processed images together. This preprocessing does not only significantly reduce the data quantity, but also simplifies downstream data analyses. Here, I apply this pipeline to datasets of the developing fly wing as well as a planarian epithelium.
I additionally address the problem of determining cell polarities in chemically fixed samples of planarians. Here, I introduce a method that automatically estimates cell polarities by computing the orientation of rootlets in motile cilia. With this technique one can for the first time routinely measure and visualize how tissue polarities are established and maintained in entire planarian epithelia.
Finally, I analyze cell migration patterns in the entire developing wing tissue in Drosophila. At each time point, cells are segmented using a progressive merging ap- proach with merging criteria that take typical cell shape characteristics into account. The method enforces biologically relevant constraints to improve the quality of the resulting segmentations. For cases where a full cell tracking is desired, I introduce a pipeline using a tracking-by-assignment approach. This allows me to link cells over time while considering critical events such as cell divisions or cell death. This work presents a very accurate large-scale cell tracking pipeline and opens up many avenues for further study including several in-vivo perturbation experiments as well as biophysical modeling.
The methods introduced in this thesis are examples for computational pipelines that catalyze biological insights by enabling the quantification of tissue scale phenomena and dynamics. I provide not only detailed descriptions of the methods, but also show how they perform on concrete biological research projects.
|
2 |
Towards Accurate and Efficient Cell Tracking During Fly Wing DevelopmentBlasse, Corinna 23 September 2016 (has links)
Understanding the development, organization, and function of tissues is a central goal in developmental biology. With modern time-lapse microscopy, it is now possible to image entire tissues during development and thereby localize subcellular proteins. A particularly productive area of research is the study of single layer epithelial tissues, which can be simply described as a 2D manifold. For example, the apical band of cell adhesions in epithelial cell layers actually forms a 2D manifold within the tissue and provides a 2D outline of each cell. The Drosophila melanogaster wing has become an important model system, because its 2D cell organization has the potential to reveal mechanisms that create the final fly wing shape. Other examples include structures that naturally localize at the surface of the tissue, such as the ciliary components of planarians.
Data from these time-lapse movies typically consists of mosaics of overlapping 3D stacks. This is necessary because the surface of interest exceeds the field of view of todays microscopes. To quantify cellular tissue dynamics, these mosaics need to be processed in three main steps: (a) Extracting, correcting, and stitching individ- ual stacks into a single, seamless 2D projection per time point, (b) obtaining cell characteristics that occur at individual time points, and (c) determine cell dynamics over time. It is therefore necessary that the applied methods are capable of handling large amounts of data efficiently, while still producing accurate results. This task is made especially difficult by the low signal to noise ratios that are typical in live-cell imaging.
In this PhD thesis, I develop algorithms that cover all three processing tasks men- tioned above and apply them in the analysis of polarity and tissue dynamics in large epithelial cell layers, namely the Drosophila wing and the planarian epithelium. First, I introduce an efficient pipeline that preprocesses raw image mosaics. This pipeline accurately extracts the stained surface of interest from each raw image stack and projects it onto a single 2D plane. It then corrects uneven illumination, aligns all mosaic planes, and adjusts brightness and contrast before finally stitching the processed images together. This preprocessing does not only significantly reduce the data quantity, but also simplifies downstream data analyses. Here, I apply this pipeline to datasets of the developing fly wing as well as a planarian epithelium.
I additionally address the problem of determining cell polarities in chemically fixed samples of planarians. Here, I introduce a method that automatically estimates cell polarities by computing the orientation of rootlets in motile cilia. With this technique one can for the first time routinely measure and visualize how tissue polarities are established and maintained in entire planarian epithelia.
Finally, I analyze cell migration patterns in the entire developing wing tissue in Drosophila. At each time point, cells are segmented using a progressive merging ap- proach with merging criteria that take typical cell shape characteristics into account. The method enforces biologically relevant constraints to improve the quality of the resulting segmentations. For cases where a full cell tracking is desired, I introduce a pipeline using a tracking-by-assignment approach. This allows me to link cells over time while considering critical events such as cell divisions or cell death. This work presents a very accurate large-scale cell tracking pipeline and opens up many avenues for further study including several in-vivo perturbation experiments as well as biophysical modeling.
The methods introduced in this thesis are examples for computational pipelines that catalyze biological insights by enabling the quantification of tissue scale phenomena and dynamics. I provide not only detailed descriptions of the methods, but also show how they perform on concrete biological research projects.
|
Page generated in 0.2709 seconds