• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterisation of zeolites for potential use as supports for low-temperature fischer-tropsch wax hydrocracking catalysts

Mokami, Khutso January 2015 (has links)
Thesis (MSc. (Chemistry)) -- University of Limpopo, 2015 / In this study, the use of 10-member ring zeolites with different silica-to-alumina ratios (SARs) as supports for palladium (Pd) to produce hydrocracking catalysts was investigated. The syntheses of zeolites ZSM-22, ZSM-48, ZBM-30 and ZSM-23 were carried out under hydrothermal conditions, and the resulting materials were characterised with XRD, SEM and BET surface area measurements, prior to activity tests. Successful synthesis of ZSM-48 and ZBM-30 remained elusive for the major part of this study, and these zeolites could therefore not be catalytically tested. The XRD patterns showed pure ZSM-22 materials with different SARs (60, 80 and 120) were successfully synthesised using hexamethylenediamine (HMDA) as a structure-directing agent (SDA) and a synthesis gel with pH 12. However, at synthesis gel pH 13, cristobalite and ZSM-5 impurity phases tend to form in addition to ZSM-22. Relative % XRD crystallinity of the materials prepared at synthesis gel pH 12 decreased with a decrease in SAR, and there was no specific trend for the response of a particular SAR to changes in pH from 12 to 13. SEM micrographs showed needle-shaped crystals with lengths in the range 0.6 - 1.2 μm. The BET surface area of the ZSM-22 with SAR of 60 was found to be 189 m2/g, which is around the theoretical BET surface area of ZSM-22 materials and the presence of impurities lowered the surface area of the ZSM-22 materials. The synthesis of ZBM-30 using triethylenetetramine (TETA) and a (1 TETA : 1 pyrrolidine) mixture as SDAs was also attempted. The XRD patterns showed that a completely amorphous material was obtained when using TETA as SDA and ZSM-39 was produced when using the mixture as SDA. The XRD patterns revealed that impurity-free ZSM-23 materials were successfully synthesised with SAR > 60, and that with SAR of 60, ZSM-5 was produced instead. Relative % XRD crystallinity of the impurity-free ZSM-23 materials increased with an increase in SAR from 80 to 120. SEM micrographs of the impurity-free ZSM-23 materials showed needle-shaped crystals of around 0.9 μm in length. The predominantly ZSM-5 material had the highest BET surface area compared to the impurity-free ZSM-23 materials. ZSM-48 synthesis was attempted using HMDA (produced ZSM-22), pyrrolidine (produced ZSM-23) and hexamethonium bromide (HMBr2) as SDAs. The XRD and SEM vi analysis showed only HMBr2 successfully directed the synthesis of impurity-free crystalline ZSM-48 at prolonged synthesis time of 168 h. ZSM-48 crystals were also needle-shaped and 4.2 - 11.3 μm in length. The incipient wetness impregnation method was used to achieve 0.5 wt. % Pd loadings on the catalysts. The hydrocracking of n-hexadecane (n-C16) over the catalysts was studied at conditions typical of catalytic cracking of LTFT products. At 225 oC, the Pd/ZSM-22 (80) and Pd/ZSM-23 (80) were highly selective to cracking products, with excessive secondary cracking occurring over these catalysts, as indicated by the C4/C12 ratios of 11.3 and 5.2, respectively. Excessive secondary cracking (C4/C12 = 11.7) was also observed over Pd/ZSM-23 (60). However, the Pd/ZSM-22 (60) and Pd/ZSM-23 (120) catalysts achieved a C4/C12 ratio close to 1.0, suggesting closeness to ideal hydrocracking behaviour. The Pd/ZSM-22 (60) (C4/C12 of 1.9) catalyst, was physically mixed with Pd/ZSM-5 (90) (C4/C12 = 6.4) and catalytically tested for the hydrocracking of n-C16. This Pd/ZSM-5/ZSM-22 catalyst achieved a remarkable C4/C12 = 1.1, which is less than what was achieved over the individual catalysts. On the basis of the C4/C12, this catalyst’s behaviour is close to that of an ideal hydrocracking behaviour. In summary, Pd/ZSM-22 (80), Pd/ZSM-22 (120) and Pd/ZSM-23 (80) catalysts are promising for diesel-selective catalysis and need further exploration.
2

In situ ¹³C NMR monitoring of the dehydration of 2-propanol over H-ZSM-5

Morgan, David Rees January 1989 (has links)
The first <i>in situ</i> ¹³C NMR monitoring of zeolite catalyzed reaction is described. The dehydration of 2-propanol over H-ZSM-5 was observed using solution type techniques. Although this produces broad lines, several mechanistic details were elucidated. This study indicates that: 1) the dehydration does not proceed through a cyclopropyl carbenium ion intermediate, 2) propene oligomerizes on the catalyst and reaches a steady state concentration before propene is desorbed, and 3) the 2-propanol flowing over the catalyst does not react with the oligomerized propene. / Master of Science

Page generated in 0.0693 seconds