• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance of zeolite ZSM-5 synthesised from South African fly ash in the conversion of methanol to hydrocarbons

Folifac, Leo January 2018 (has links)
Thesis (Master of Engineering in Chemical Engineering)--Cape Peninsula University of Technology, 2018. / Zeolites have found applications as heterogeneous or solid catalyst in the petrochemical and refining industries. Zeolite ZSM-5 in particular is a highly siliceous solid catalyst with a porous network that consists of medium pore structure (pore openings 5-5.5 A). The solid catalyst (ZSM-5) is well known for its high temperature stability and strong acidity, which makes it an established catalyst used for different petrochemical processes such as Methanol-To-Gasoline (MTG), isomerisation, disproportionation, and cracking. Unlike in the past, the synthesis of zeolite ZSM-5 from other sources that contains silica (Si) and alumina (Al) with the addition of a template (TPBr) as a structure-directing agent is eminent. Its synthesis can be achievable from coal fly ash that is a waste material and a cheap source of Si and Al. Coal fly ash is a waste material that is produced during the combustion of coal to generate electricity. The elemental composition of coal fly ash consists of mostly SiO2 and Al2O3 together with other significant and trace elements. Zeolite ZSM-5 catalyst synthesised from coal fly ash by previous authors required an excessive amount of additional source of silica even though the XRD spectra still show the presence of quartz and mullite phase in the final products. These phases prevented the use of fly ash (solid) as a precursor to synthesise zeolite ZSM-5 products. However, the synthesis of high purity zeolite ZSM-5 products by extracting silica and alumina from South African fly ash and then using it with small amounts of fumed silica was investigated This aim was achieved by fusing fly ash (FA) with sodium hydroxide (NaOH) under hydrothermal condition set at 550 oC for 1 hour 30 minutes. The quartz and mullite phase observed by previous authors was digested by the fusion process. Thereafter, the treatment of fused fly ash filtrate (FFAF) with concentrated H2SO4 (98-99%), precipitated silica and removed Al that therefore increased the Si/Al ratio from 1.97 in fly ash (FA) to 9.5 in the silica extract (named fused fly ash extract). This route was designed to improve the quality of the final products and reduced the amount of fumed silica added to the synthesis mixture prior to hydrothermal synthesis. In this line of investigation, the process of adding fumed silica to the hydrothermal gel was optimised. H-FF1 with a Si/Al ratio of 9.5 was synthesised using the silica extract without the addition of fumed silica. Its XRD, SEM and relative crystallinity results proved that H-FF1 was inactive and hence was not further characterised and utilised in the conversion of methanol to hydrocarbons (MTH). Purer phase zeolite ZSM-5 products (H-FF2 and H-FF3) that were synthesised from silica extract with the addition of small amounts of fumed silica were characterised and successfully used in the methanol to hydrocarbons (MTH) reaction. The synthesised ZSM-5 products had different Si/Al ratio, different morphology, crystal size, BET surface area, and relative crystallinity as well as different trends in the MTH reaction. It was also observed that H-FF2 and H-FF3 (pure phase) solid catalyst deactivated faster than the commercial H-ZSM-5 in the MTH reaction. However, the MTH conversion over H-FF2 competed with that of the commercial H-ZSM-5 within 3 hours of time on stream (TOS) but later deactivated at a faster rate. This was caused by the large crystal size and reduced BET surface area of H-FF2 when compared to the commercial H-ZSM-5. However, H-FF2 performed better than H-FF3 on stream (MTH reaction) due to its smaller crystal size and higher BET. This study has successfully utilised a route that synthesised high purity zeolite ZSM-5 products from the South African fused fly ash extract (FFAE) with the addition of small amounts of fumed silica. The properties of the synthesised zeolite ZSM-5 products (H-FF2 and H-FF3) were similar to that of the commercial H-ZSM-5 as well as active in the MTH reaction. This promoted the utilisation of a waste material (coal fly ash) to synthesise highly siliceous zeolite ZSM-5 products that avoided the presence of mineral phases from fly ash in the final products.
2

Investigation of some scale-up conditions on the synthesis of faujasite zeolites from South African coal fly ash

Brassell, James Philip January 2017 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2017. / Coal fly ash waste produced from the coal combustion process is becoming an ever increasing concern. It is produced in such abundance due to not only South Africa, but the whole of the world relying mainly on coal combustion for the main source of energy production. With the growing rate of the human population this energy production is ever increasing. The current methods of disposal of this fly ash is not sustainable, it is being dumped in ash dumps, and poses a risk to the surrounding environment and human population. Therefore, processes need to be developed to take this waste and turn it into useful materials. This would not only solve the problem of its disposal but also create useful products that can be applied to further protect the environment. It was discovered that one of the useful materials that can be synthesised from fly ash are zeolites. These nano-porous structures have a wide variety of uses. Therefore, many studies have been conducted around optimising the synthesis of various zeolites from coal fly ash. More recently these studies have focused on the scale-up conditions needed to synthesise these zeolites on the large industrial scale, regarding the sheer volume of fly ash produced annually. The most robust and widely used technique for zeolite synthesis involves a pre-synthesis fusion of the fly ash with sodium hydroxide at a temperature of 550 0C. This would not be feasible to scale-up to industrial scale because of the energy intensity. Therefore, alternative pre-synthesis techniques have been proposed. One of those techniques involves using a sonochemical treatment as a pre-synthesis. It can be argued that this technique may not be able to be easily scaled. To solve this problem, another alternative technique was investigated within this study. It involves the use of a jet loop pilot plant mixing system, which can be scaled-up very readily to industrial scale.

Page generated in 0.1208 seconds