• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Closed Path Approach to Casimir Effect in Rectangular Cavities and Pistons

Liu, Zhonghai 2009 December 1900 (has links)
We study thoroughly Casimir energy and Casimir force in a rectangular cavity and piston with various boundary conditions, for both scalar field and electromagnetic (EM) field. Using the cylinder kernel approach, we find the Casimir energy exactly and analyze the Casimir energy and Casimir force from the point of view of closed classical paths (or optical paths). For the scalar field, we study the rectangular cavity and rectangular piston with all Dirichlet conditions and all Neumann boundary conditions and then generalize to more general cases with any combination of Dirichlet and Neumann boundary conditions. For the EM field, we first represent the EM field by 2 scalar fields (Hertz potentials), then relate the EM problem to corresponding scalar problems. We study the case with all conducting boundary conditions and then replace some conducting boundary conditions by permeable boundary conditions. By classifying the closed classical paths into 4 kinds: Periodic, Side, Edge and Corner paths, we can see the role played by each kind of path. A general treatment of any combination of boundary conditions is provided. Comparing the differences between different kinds of boundary conditions and exploring the relation between corresponding EM and scalar problems, we can understand the effect of each kind of boundary condition and contribution of each kind of classical path more clearly.
2

On the zero-point energy of elliptic-cyliindrical and spheroidal boundaries : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Theoretical Physics at Massey University, New Zealand

Kitson, Adrian Robert January 2009 (has links)
Zero-point energy is the energy of the vacuum. Disturbing the vacuum results in a change in the zero-point energy. In 1948, Casimir considered the change in the zeropoint energy when the vacuumis disturbed by two parallelmetal plates. The plates disturb the vacuum by restricting the quantum fluctuations of the electromagnetic field. Casimir found that the change in the zero-point energy implies that the plates are attracted to each other. With the recent advances made in the experimental verification of this remarkable result, theoretical interest has been rekindled. In addition to the original parallel plate configuration, several other boundaries have been studied. In this thesis, two novel boundaries are considered: elliptic-cylindrical and spheroidal. The results for these boundaries lead to the conjecture that zero-point energy does not change for small deformations of the boundary that preserve volume. Assuming the conjecture, it is shown that zero-point energy plays a stabilizing role in quantum chromodynamics, the leading theory of the strong interaction.
3

Density Functional Theory (DFT) study of hydrogen storage in porous silicon

Boaks, Mawla January 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Based on plane wave DFT calculation, we carried out micro level investigation of hydrogen storage in nanoporous silicon (npSi). One quarter of a hexagonal pore with Palladium catalyst placed at the surface has been studied for hydrogen dissociation, spillover, bond hopping, and diffusion for both single catalyst atom and small catalyst cluster consisting of multiple catalyst atoms. All the DFT computations were done in one of the biggest research supercomputer facilities of the world, Big Red II. We opted ABINIT, an open source DFT tool for our computations. Our calculation revealed low dissociation, spillover, and bond hoping energy barrier. The energy required to be provided from external sources to fully recharge the storage medium from a gaseous source at a completely empty state has also been evaluated. Hydrogen diffusion along the inner surface of the pore as a means of bond hopping and the possibility of quantum tunneling, a low temperature phenomena used to spontaneously go over an otherwise less likely high energy barrier have been studied as well. Using these micro level parameter values evaluated from the DFT study, the performance of any potential hydrogen storage material can be compared to a set of characteristics sought in an efficient storage media. Thus, the micro scale feasibility of this novel npSi material based hydrogen storage technology was studied as a part of a STTR Phase I project.
4

The quantum vacuum near time-dependent dielectrics

Bugler-Lamb, Samuel Lloyd January 2017 (has links)
The vacuum, as described by Quantum Field Theory, is not as empty as classical physics once led us to believe. In fact, it is characterised by an infinite energy stored in the ground state of its constituent fields. This infinite energy has real, tangible effects on the macroscopic clusters of matter that make up our universe. Moreover, the configuration of these clusters of matter within the vacuum in turn influences the form of the vacuum itself and so forth. In this work, we shall consider the changes to the quantum vacuum brought about by the presence of time-dependent dielectrics. Such changes are thought to be responsible for phenomena such as the simple and dynamical Casimir effects and Quantum Friction. After introducing the physical and mathematical descriptions of the electromagnetic quantum vacuum, we will begin by discussing some of the basic quasi-static effects that stem directly from the existence of an electromagnetic ground state energy, known as the \textit{zero-point energy}. These effects include the famous Hawking radiation and Unruh effect amongst others. We will then use a scenario similar to that which exhibits Cherenkov radiation in order to de-mystify the 'negative frequency' modes of light that often occur due to a Doppler shift in the presence of media moving at a constant velocity by showing that they are an artefact of the approximation of the degrees of freedom of matter to a macroscopic permittivity function. Here, absorption and dissipation of electromagnetic energy will be ignored for simplicity. The dynamics of an oscillator placed within this moving medium will then be considered and we will show that when the motion exceeds the speed of light in the dielectric, the oscillator will begin to absorb energy from the medium. It will be shown that this is due to the reversal of the 'radiation damping' present for lower velocity of stationary cases. We will then consider how the infinite vacuum energy changes in the vicinity, but outside, of this medium moving with a constant velocity and show that the presence of matter removes certain symmetries present in empty space leading to transfers of energy between moving bodies mediated by the electromagnetic field. Following on from this, we will then extend our considerations by including the dissipation and dispersion of electromagnetic energy within magneto-dielectrics by using a canonically quantised model referred to as 'Macroscopic QED'. We will analyse the change to the vacuum state of the electromagnetic field brought about by the presence of media with an arbitrary time dependence. It will be shown that this leads to the creation of particles tantamount to exciting the degrees of freedom of both the medium and the electromagnetic field. We will also consider the effect these time-dependencies have on the two point functions of the field amplitudes using the example of the electric field. Finally, we will begin the application of the macroscopic QED model to the path integral methods of quantum field theory with the purpose of making use of the full range of perturbative techniques that this entails, leaving the remainder of this adaptation for future work.

Page generated in 0.0491 seconds