• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictions of Pulp and Paper Properties Based on Fiber Morphology / Prediktering av massa- och pappersegenskaper baserat på fibermorfologi

Sundblad, Sara January 2015 (has links)
The aim is to investigate models that predicts the potential of pulp and evaluate the relevance of the zero-span tensile index within these. Two chemical pulps made from softwood and eucalyptus were refined in a Voith-beater with different energy input in order to study the change of fiber morphology signals and other pulp and paper properties. Chemical, THP pulp from Södra Värö is also used as an initial analysis for morphological connections to Zero-span tensile index. The L&W Fiber Tester Plus is used in order to study the pulps fiber morphology and Pulmac 2000 for zero span. Handsheets are made for mechanical tests such as tensile properties, ZD-strength and optical properties. Many of the given signals change according to clear patterns with increasing refining energy. Using least square methods, formulas describing the development with high adaptation could be formulated. Many of the measured aspects changes over already known patterns. These are then applied in the models. Three possible models is tested: linear regression, Shear-Lag and Page. Of the three, only the two first ones where able to produce reliable models, whereas the third required data that was difficult to acquire at the same time as the adaptation was very low. The only model that use exclusively morphology data is linear regression.

Page generated in 0.0582 seconds