Spelling suggestions: "subject:"zinc neurophysiology"" "subject:"zinc histophysiology""
1 |
Functional characterization of a Krüppel zinc finger protein- zinc finger protein 146. / CUHK electronic theses & dissertations collectionJanuary 2008 (has links)
By means of reverse-transcription polymerase chain reaction, overexpression of ZNF146 was detected in two human HCC cell lines HepG2 and Hep3B and a clear relationship between HCC and overexpression of ZNF146 has been established. Subcellular localization of ZNF146 protein in liver cells was studied by generation and expression of a green fluorescent protein (GFP) fusion protein. The nuclear localization and the reported DNA binding ability of ZNF146 protein provided a hint that ZNF146 may carry out its function in the cell system by interacting with specific genomic DNA sequences. Recombinant ZNF146 protein was expressed using bacterial and yeast system for the genomic DNA pull down assay in the identification of potential interacting genomic DNA sequences. Several potential genomic DNA sequences that interact with ZNF146 were identified and the gene MDM2 is the one of the candidates that is directly related to human carcinogenesis. MDM2 is a negative regulator of the tumor suppresser protein p53. Deregulation of MDM2 will impair the cell's ability in cell cycle arrest, DNA repair and apoptosis upon induced DNA damage. / Hepatocellular carcinoma (HCC) is a type of primary malignant liver tumor. And is one of the most frequent malignancies worldwide. The focus of this research project is the characterization of a Kruppel zinc finger protein, zinc Finger Protein 146 (ZNF146) using HCC as a disease model. The aim of this project is to understand the functional role ZNF146 and try to explore the mechanism of how ZNF146 might be involved in the carcinogenesis of HCC. / In order to have a better understanding with the protein ZNF146, SUMOylation properties of this protein has been studied. SUMO1 modification on ZNF146 has already been reported. And in our study, experimental result demonstrated that ZNF146 is also modified by SUMO2 and SUMO3 in liver cells. Other than the SUMOylation sites for SUMO1 protein which has been reported, modification sites for SUMO2 at the K247 and K275 positions were mapped, while K191R, K219R, K247R, K256R and K275R, five positions were mapped for SUMO3 modification. A more complete picture of the SUMOylation properties of ZNF146 has been revealed. Since we hypothesized that ZNF146 is related to the p53 tumor suppressor, cell cycle control and DNA repair pathway, a cell cycle study using flow cytometry was performed for the investigation of the effect on cell cycle regulation by ZNF146 overexpression. In our study, ZNF146 overexpression promoted the G1/S transition in the cell division cycle, which indicated that liver cells were more active for the progression of cell cycle. / On the other hand, using cDNA microarray technology expression profiles of ZNF146 overexpressing and non-overexpressing liver cell lines were compared and with real-time polymerase chain reaction, six candidate genes CRLF1, IFI44, ST6GAL1, LOC441601, IL18 and RAD17 were confirmed with their deregulation induced by the overexpression of ZNF146. Four of the candidates, IFI44, LOC441601, IL18 and RAD17 were found to be related to the p53 tumor suppressor activity or DNA damage, repair response and control. This observation, together with the result of genomic DNA pull down assay, gives us a hint that ZNF146 is possibly involved in liver carcinogenesis by affecting DNA repair and cell cycle control upon induced DNA damage. / The gene ZNF146 codes for a member of the Kruppel zinc finger proteins, however ZNF146 protein is different from most members of the Kruppel zinc finger proteins subfamily. It encodes a 33 kDa protein solely composed of 10 zinc finger motifs and is devoid of any non-zinc finger regulatory domain for interactions with other proteins. ZNF146 overexpression has been reported in a number of cancers including colon cancer and pancreatic carcinoma. However, the functional role of ZNF146 overexpression in tumorigenesis is yet to be solved and not much research on how ZNF146 might be invovled in the establishment of HCC was published. / To conclude, the experimental results of this study support the hypothesis that ZNF146 overexpression may deregulating the cell division cycle and some genes differentially regulated upon over-expression of ZNF146 are related to the regulations of DNA damage response. Future research on ZNF146 can be focused on the detail regulatory pathway of ZNF146 overexpression and its interaction between the p53 tumor suppressor, DNA damage response and cell cycle regulation, and a fuller picture of how ZNF146 overexpression might induce hepatocarcinogenesis can be revealed. / Yeung, Tsz Lun. / Adviser: Miu Yee (Mary) Waye. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3329. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 287-304). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
Page generated in 0.0734 seconds