• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Size-controllable growth of ZnO nanorod arrays and their surface modifications =: ZnO納米柱陣列可控生長與表面修飾. / ZnO納米柱陣列可控生長與表面修飾 / CUHK electronic theses & dissertations collection / Size-controllable growth of ZnO nanorod arrays and their surface modifications =: ZnO na mi zhu zhen lie ke kong sheng zhang yu biao mian xiu shi. / ZnO na mi zhu zhen lie ke kong sheng zhang yu biao mian xiu shi

January 2010 (has links)
At last, a thermal evaporation method that modifies the surface of ZnO nanorods and forms core shell structure is developed, which structure constitutes the photoelectrode for solar energy application. Single crystal ZnO nanorods are uniformly covered by wurtzite polycrystalline CdxZn1-x SySe1-y layer. The band gap of the shell can be systematically tuned from 2.5 to 1.7 eV by varying its composition, as suggested by the optical extinction measured of the samples. The type II band alignment between the ZnO core and the alloy shell enables effective photo-generated charge carrier separation, and the single crystalline ZnO nanorod array provides a direct electrical pathway for the photo-injected electron transport. The nanocable solar cells exhibited short-circuit current ∼0.2 mA/cm 2 and open-circuit voltages of 0.45 V when illuminated with 100 mW/cm 2 simulated AM 1.5 spectrum. / Green emission is observed from the ZnO nanorods synthesized by both methods, which is commonly attributed to the surface defect emission from the nanostructure. We modify surface of the nanorods with SiO 2 and investigate the relation between green emission and the surface defect. However, the surface passivation fails to reduce the green emission significantly, suggesting that surface defects of ZnO are not necessarily responsible for the green emission, but the interior structure quality of the ZnO nanorods decides the luminescence behavior. / In this study, a solution chemistry based method to grow aligned ZnO nanorod arrays on Zn foil is developed at first. Effects of various growth parameters, including the temperature, solution composition and the concentration of individual components on the morphology, structural quality, and properties of the ZnO nanorods are studied. The average diameter of the nanorods in the array can be tuned from ∼20 nm to ∼150 nm by systematically changing the growth conditions. Nanorods with larger diameters are found to be of better structural quality as compared to the smaller diametered ones, as suggested by the cathodoluminescence measurement. Following similar logic, a vapor transport deposition route on controllable fabricating of the ZnO nanorod arrays is investigated. The average diameter of the ZnO nanorods can be tuned from less than 40 nm to larger than submicron, by controlling the fabrication conditions. Larger-diametered nanorods that grow on higher temperature zone are found to possess higher band edge to defect emission ratio. / One dimensional (1D) ZnO nanostructure becomes a research focus in recent years. On the one hand, ZnO itself possesses structural, electrical and optical properties that make it useful for a diverse range of technological applications. On the other hand, semiconductor nanowire owns many advantages, such as superiority in electron transport and its high surface to volume ratio. Aligned ZnO 1D nanostructures on conducting substrates are of special interests, as they are easy to be integrated into devices, directly working as functional unit. / Jiao, Yang. / Adviser: Li Quan. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 107-109). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Jiao, Yang.
2

Atomic structure studies of zinc oxide (0001) polar surface by low energy electron diffraction at multiple incident angles

Yang, Yang, 楊暘 January 2012 (has links)
Zinc oxide surfaces have been of considerable interest because of their favorable properties, such as high electron mobility, good transparency, large electronic breakdown field and wide bandgap. Knowing the surface structure of ZnO is the key to better understand the above phenomena and to further develop its applications. In this thesis, the Patterson Function was evaluated by inversion of LEED I-V spectra at multiple incident angles to determine the surface structure of the ZnO(0001) polar surface. The sample was prepared by degassing and then 15 cycles of argon sputtering and annealing. The experimental LEED I-V spectra from multiple incident angles were taken from the sample. After processing the data by a macro program in OPTIMAS and a Matlab program, a clean Patterson Function map showing the inter-atomic pair distances was obtained. It was then compared with the simulated Patterson Function map of the proposed 1×1 bare surface model. As a result, the spots positions in the simulated Patterson Function map matched well with that of the experimental Patterson Function map. On the other hand, the LEED I-V curve fitting work was done by the surface science group of City University of Hong Kong. Six models were proposed by them and normal incidence theoretical LEED I-V spectra were calculated to fit with the experimental LEED I-V curves provided by us. Among the six models 2×2 Zn point defect model was fitted to be the best model with the R-factor 0.244. We also compared the multiple scattering simulated Patterson Function map of 2×2 Zn point defect model with the experimental one to verify the validity of the model. As a result, the model fit the experimental data. So we conclude that in general 1×1 model support the order part, and 2×2 top layer Zn defect model best fits the random missing part. / published_or_final_version / Physics / Master / Master of Philosophy
3

Determination of surface atomic structures of Bi₂Se₃(111)-(2X2) film and ZnO nano-rods by low energy electron diffraction

Chung, Wing-lun, 鍾詠麟 January 2014 (has links)
abstract / Physics / Doctoral / Doctor of Philosophy

Page generated in 0.0464 seconds