• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of the effect of impurities and defects on the ore beneficiation of metal sulphides

Richter, Kalman 10 September 2014 (has links)
Ph.D. (Chemistry) / The effect of crystal defects on the adsorption and flotation properties of zinc sulphides was examined. Flotation experiments were restricted to collectorless flotation, that is to the flotation of untreated and copper-activated samples. The effect of cyanide treatment was examined only so that an explanation could be found for the bonding characteristics of the adsorbed copper on regions where the crystallography was undisturbed and on those where it was distorted. The electrochemical method for the determination of copper permitted continuous and highly sensitive monitoring of the copper adsorption on the sphalerites. The first part of the thesis concerns the adsorption of copper on synthetic zinc sulphide crystals and natural sphalerites. It is stated that the degree of adsorption depends on the defect structure. Structure etching, gamma-ray irradiation, and selective grinding experiments are shown to justify the conclusions reached. The second part of the thesis describes the flotation of the samples. The adsorption characteristics of the samples are defined in the first part and the adsorption and flotation properties are correlated.
2

Optical, laser spectroscopic, and electrical characterization of transition metal doped ZnSe and ZnS nano- and microcrystals

Kim, Changsu, January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed Feb. 3, 2010). Additional advisors: Renato Camata, Derrick Dean, Chris M. Lawson, Andrei Stanishevsky, Sergey Vyazovkin. Includes bibliographical references (p. 133-140).
3

Synthetic and Analytical Advancements for Zinc Sulfide Containing Quantum Dots

Bennett, Ellie January 2021 (has links)
Colloidal semiconductor nanocrystals exist at the interface of inorganic chemistry, solid-state physics, and materials applications. The highly tunable and size-dependent properties position them as prime candidates for advancing a range of technologies, including improving efficiency in solid-state lighting devices and high color-purity displays. To be successful in these endeavors, quantum dots require excellent optical properties, such as bright emission. Optimization of a zinc sulfide coating is widely regarded as a key requirement to achieving these necessary performances. Even so, zinc sulfide nanocrystal chemistry remains underdeveloped. This dissertation addresses these shortcomings and provides comprehensive synthetic and analytical tools to harness the potential of zinc sulfide containing nanocrystals. Chapter 1 introduces semiconductor nanocrystals, also referred to as quantum dots, and begins with a description of the size-dependent optical properties. Factors that lead to poorer emission properties, such as undercoordinated surface atoms are discussed. Methods to alleviate these issues, including controlling the surface coordination environment, and design and growth of heterostructures are introduced. Lastly, synthetic approaches and nanocrystal formation mechanisms are described. Chapter 2 covers the synthesis and size-dependent optical properties of zinc sulfide nanocrystals. We find that commonly used solvents in nanocrystal reactions lead to the formation of polymeric byproducts that are challenging to purify away, and thus design the zinc sulfide synthesis such that these can be avoided. Leveraging a library of rate tunable thioureas the final nanocrystal size can be carefully controlled. The reactions follow a thermally activated growth process, with larger zinc sulfide nanocrystals accessible at higher temperatures. Most relevantly for later chapters, the surface coordination environment is highly important; bulkier zinc carboxylate ligands that cannot achieve high surface coverages result in higher growth rates. These results represent the most tunable size controls reported for zinc sulfide nanocrystals. Chapter 3 uses high resolution electron microscopy techniques to study the shape (morphology) of zinc sulfide nanocrystals, synthesized using the methods developed in the second chapter. Irregular, anisotropic growth is commonly seen in zinc sulfide shell growth and is attributed to core/shell interfacial strain. We find that this growth also occurs in the binary zinc sulfide system. Synthetic conditions favoring fast growth result in unselective, isotropic growth of spherical zinc sulfide. Conversely, slower conditions can lead to irregular, anisotropic shapes. The shape is also highly dependent on the coordination environment during growth. Small, sterically unencumbered ligands stabilize specific crystal facets, leading to selective, anisotropic growth. These findings are translated to shelling procedures in Chapter 6, and further emphasize the need to understand and characterize zinc sulfide surfaces. Chapter 4 establishes an empirical relationship between the band gap energy of a zinc sulfide nanocrystal and its diameter. The literature reports a wide spread of diameters for a given energy, meaning zinc sulfide sizes could not previously be easily calculated from their optical properties. Leveraging the size- and shape-control discussed in Chapters 2 and 3, we assess the utility of a range of nanocrystal characterization techniques for accurately sizing quantum confined zinc sulfide. Using electron microscopy and X-ray scattering methods we present an updated energy-size (“sizing curve”) relationship for zinc sulfide. These results represent the most comprehensive zinc sulfide nanocrystal sizing study and enable the rapid size characterization of zinc sulfide from its absorbance spectrum. This provided crucial insight into the reaction progressions described in Chapter 2. Chapter 5 covers our endeavors to characterize and quantify the zinc sulfide nanocrystal surface chemistry, which we believe is imperative to improving shelling procedures and optical properties in zinc sulfide heterostructures. With no published extinction coefficient, the surface coverages of zinc sulfide cannot be obtained. Using the size- and shape-controlled syntheses, in conjunction with optical absorption spectroscopy and elemental analysis, we calculate extinction coefficients for a range of zinc sulfide nanocrystal sizes. The size-dependence is well described by a power law, and this represents the first reported extinction coefficient for zinc sulfide. Using this, we report the first surface coverages of zinc sulfide nanocrystals and assess the binding affinity of zinc carboxylates to the surface by monitoring their displacement by L-type ligands. Chapter 6 widens the zinc sulfide synthetic methods developed in earlier chapters to deposit zinc sulfide shells onto blue-emitting II-VI and red-emitting III-V nanocrystals. The reaction shows versatility, shelling nanocrystals over a wide range of temperatures. We demonstrate morphology control over the zinc shell by altering the deposition kinetics and coordination environment. Usually, thick, homogenous shells are desired by the nanocrystal field. However, by correlating the shell morphology to its optical properties, we see that the anisotropic shells generally achieve higher photoluminescence quantum yields (PLQYs). We also report progress towards cadmium-free quantum dot downconverters for use in solid-state lighting applications. Among other things, the photoluminescence intensity evolution throughout the shelling procedure is highly dependent on the initial surface termination of the nanocrystal core. Application of surface treatments allows brighter zinc sulfide shelled III-V heterostructures to be accessed.

Page generated in 0.078 seconds