Spelling suggestions: "subject:"zintl ion"" "subject:"intl ion""
1 |
Solution reactivity studies of group 15 Zintl ionsKnapp, Caroline Mary January 2013 (has links)
The reactivity of group 15 Zintl ions, E<sub>7</sub><sup>3–</sup> (E = P, As), towards a number of transition and post-transition metal reagents has been studied. The synthesis and characterisation of the resulting novel cluster anions are described herein. The reactions of E<sub>7</sub><sup>3–</sup> with [Cu<sub>5</sub>(mes)<sub>5</sub>], MPh<sub>2</sub> (M = Zn, Cd) and InPh<sub>3</sub> yielded the Cu–Cu bridged species [Cu<sub>2</sub>(E<sub>7</sub>)<sub>2</sub>]<sup>4–</sup> (E = P, As), the group 12 bridged cluster anions [M(E<sub>7</sub>)<sub>2</sub>]<sup>4–</sup> (M = Zn: E = P, As; M= Cd: E = P), and the In-functionalised Zintl ions [E<sub>7</sub>InPh<sub>2<sub>]<sup>2–</sup>, respectively. P<sub>7</sub><sup>3–</sup> and As<sub>7</sub><sup>3–</sup> have been found to react with a number of metal salts, namely [M(nbe)<sub>3</sub>][SbF<sub>6</sub>] and MCl (M = Ag, Au), InCl<sub>3</sub>, TlCl and MI<sub>2</sub> (M = Sn, Pb). These reactions formed the Ag–Ag and Au–Au bridged complexes [M<sub>2</sub>(HP<sub>7</sub>)<sub>2</sub>]<sup>2–</sup> (M = Ag, Au), the In-bridged species [In(E<sub>7</sub>)<sub>2</sub>]<sup>3–</sup> (E = P, As), the Tl-derivatised Zintl ions [TlE<sub>7</sub>]<sup>2–</sup> (E = P, As), and the sixteen vertex cluster anions [ME<sub>15</sub>]<sup>3–</sup> (M = Sn, Pb; E = P, As). The reactivity of P<sub>7</sub><sup>3–</sup> towards a series of group 8 compounds has also been studied. The reactions of P<sub>7</sub><sup>3–</sup> with FeCl<sub>2</sub> and [Ru(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub>] produced [M(HP<sub>7</sub>)<sub>2</sub>]<sup>2-</sup> (M = Fe, Ru). NMR studies showed that these species can be deprotonated to form [M(P<sub>7</sub>)<sub>2</sub>]<sup>4–</sup> (M = Fe, Ru). These Fe and Ru complexes are isoelectronic with ferrocene. In addition, P<sub>7</sub><sup>3–</sup> reacts with [Ru(COD)(η<sup>3</sup>-CH<sub>2</sub>C(CH<sub>3</sub>)CH<sub>2</sub>)<sub>2</sub>] to form [(C<sub>4</sub>H<sub>7</sub>)P<sub>7</sub>Ru(COD)]<sup>2–</sup>. Both P<sub>7</sub><sup>3–</sup> and As<sub>7</sub><sup>3–</sup> undergo transition metal mediated activation reactions in the presence of [Co(PEt<sub>2</sub>Ph<sub>2</sub>)(mes)<sub>2</sub>], yielding [Co(η<sup>5</sup>-P<sub>5</sub>){η<sup>2</sup>-HP<sub>2</sub>(mes)}]<sup>2–</sup> and [Co([η<sup>3</sup>-As<sub>3</sub>){η<sup>4</sup>-As<sub>4</sub>(mes)<sub>2</sub>}]<sup>2–</sup>, respectively.
|
2 |
Inverted Zintl phases and ions - A search for new electronic properties.Lindsjö, Martin January 2002 (has links)
No description available.
|
3 |
Electronic structure of open-shell transition metal complexesKrämer, Tobias January 2011 (has links)
This thesis presents electronic structure calculations on problems related to the bonding in inorganic coordination compounds and clusters. A wide range of molecules with the ability to exist in different structural forms or electronic states has been selected and density functional theory is systematically applied in order to gain detailed insight into their characteristics and reactivity at the electronic level. First, we address the question of redox non-innocent behaviour of bipyridine in a series of 1st row transition metal complexes. Complexes of the type [M(2,2'-bipyridine)(mes)₂]<sup>0</sup> (M = Cr, Mn, Fe, Co, Ni; mes = 2,4,6-Me₃C6H₂) and their one-electron reduced forms have been explored. The results clearly show that the anions are best described as complexes of the monoanionic bipyridine radical (S<sub>bpy</sub> = 1/2), giving a rationale for the observed structural changes within the ligand. Likewise, we have identified dianionic bipyridine in both the complexes [Zn2(4,4'-bpy)(mes)₄]²<sup>−</sup> and [Fe(2,2'-bpy)₂]²<sup>−</sup>. In no case have we found evidence for significant metal-to-ligand backbonding. The subject of redox-noninnocence is further revisited in a comparative study of the two complexes [M(o-Clpap)₃] (M = Cr, Mo; o-Clpap = 2-[(2-chloro-phenyl)azo]-pyridine), and their associated electron transfer series. The results indicate that all electron transfer processes are primarily ligand-based, although in the case of the Mo analogue these are coupled to substantial electron density changes at the metal. The ability of pap to form radical anions finds a contrasting case in the di- nuclear Rh complex [Rh₂(μ-p-Clpap)₂ (cod)Cl₂], where the two ligand bridges act as acceptors of strong dπ∗ backbonding from a formally Rh<sup>–I</sup> centre. We then direct our attention to the endohedral Zintl clusters [Fe@Ge<sub>10</sub>]³<sup>−</sup> and [Mn@Pb<sub>12</sub>]³<sup>−</sup>, which reveal peculiar topologies. We have probed the electronic factors that influence their geometric preferences, and propose a model based on the shift of electron density from the endo- hedral metal to the cage to account for the observed geometries. Subsequently, we reassess the electronic structure of the xenophilic clusters Mn₂(thf)₄(Fe(CO)₄)₂ and [Mn(Mn(thf)₂)₃(Mn(CO)₄)₃]<sup>–</sup>. We conclude that these are best viewed as exchange coupled Mn<sup>II</sup> centres bridged by closed- shell carbonylate fragments. In the closing chapter the reduction of NO₂<sup>–</sup> to NO by the complex [Cu(tct)(NO₂)]<sup>+</sup> (tct = cis,cis-1,3,5-tris(cinnamylideneamino)cyclohexane) is studied, a process that mimics the enzyme-catalysed reaction. Two viable pathways for the reaction have been traced and key inter-mediates identified. Both direct release of NO or via decomposition of a Cu-NO complex are kinetically and thermodynamically feasible.
|
4 |
Inverted Zintl phases and ions - A search for new electronic properties.Lindsjö, Martin January 2002 (has links)
NR 20140805
|
5 |
Chemical reactivity of group 14 [E9]4– and 15 [E'7]3– Zintl ionsEspinoza Quintero, Gabriela January 2015 (has links)
This thesis describes the reactivity of Zintl ions of groups 14 [E<sub>9</sub>]<sup>4–</sup> (E = Ge and Sn)and 15 [E'<sub>7</sub>]<sup>3–</sup> (E' = P and As) towards a number or transition, post-transition and main group reagents. The synthesis and characterisation of the resulting novel cluster anions is described herein. Coordination compounds of group 14 Zintl ions were synthesised when K<sub>4</sub>Ge<sub>9</sub> was reacted with Zn[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> to give the simple coordination compound [Ge<sub>9</sub>ZnN(SiMe<sub>3</sub>)<sub>2</sub>]<sup>3–</sup>. The heavier analogue K<sub>4</sub>Sn<sub>9</sub> reacts with the same metal precursor to give the paramagnetic species [Sn<sub>9</sub>ZnNSiMe<sub>3</sub>]<sup>3–</sup> where a trimethylsilyl group has been lost. K<sub>4</sub>Ge<sub>9</sub> reacts with [Ru(COD)(η<sup>3</sup>-CH<sub>2</sub>C(CH<sub>3</sub>)CH<sub>2</sub>)<sub>2</sub>] to form the paramagnetic endohedral compound [Ru@Ge<sub>12</sub>]<sup>3–</sup> and with [Co(PEt<sub>2</sub>Ph)<sub>2</sub>(mes)<sub>2</sub>] to form the prolate endohedral compound [Co<sub>2</sub>@Ge<sub>16</sub>]<sup>4–</sup>, which has two metal centres encapsulated inside the sixteen atom germanium cage. Regarding group 15 Zintl ion reactivity, the reactions between pyridine solutions of [HP<sub>7</sub>]<sup>2–</sup> and E[N(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (E = Ge, Sn and Pb) have been found to yield coordination compounds of the type [P7E(N(SiMe3)2]2–. The germanium containing species [P<sub>7</sub>GeN(SiMe<sub>3</sub>)<sub>2</sub>]<sup>2–</sup> quickly decomposes at room temperature to give rise to the thermodynamic product [(P<sub>7</sub>)<sub>2</sub>Ge<sub>2</sub>N(SiMe<sub>3</sub>)<sub>2</sub>]<sup>3–</sup>, a process that involves the loss of an amide moiety. Activation products were also synthesised from the reaction of [E'<sub>7</sub>]<sup>3–</sup> with varying stoichiometries of VCp<sub>2</sub>. The reaction with 0.7 equivalents of VCp<sub>2</sub> yields the sandwich complexes [CpV(η<sup>5</sup>-E'<sub>5</sub>)]<sup>n–</sup> (E' = P: n = 1; E' = As, n = 1 and 2) whereas with 2.5 equivalents the products are the triple-decker sandwich complexes [(CpV)<sub>2</sub>(η<sup>x</sup>-E'<sub>x</sub>)]– (E' = P: x = 6; E' = As: x = 5).
|
Page generated in 0.0463 seconds