Spelling suggestions: "subject:"zirconium oxide -- defects"" "subject:"zirconium oxide -- efects""
1 |
A microscopic study of the interaction between aliovalent dopants and native defects in group IV oxides : indium and cadmium in ceria and zirconiaZacate, Matthew O. 11 March 1997 (has links)
In order to understand better the defect structure and dynamics associated
with lower valent dopants complexed with native defects in group IV oxides, In/Cd
perturbed angular correlation spectroscopy was performed in ceria and zirconia. Examining
the orientation symmetry axis of defects in ceria single crystals at low temperature
has allowed the identification of a cadmium with a bound near-neighbor
oxygen-vacancy complex as well as a complex involving a cadmium with two opposing,
near-neighbor oxygen vacancies. The orientation of the symmetry axis of a third
complex is reported; however, this information is not sufficient to identify it. Complementing
these low temperature studies, the dynamics of the cadmium/oxygen-vacancy
interaction in zirconia at high temperatures was studied. The motion of the oxygen
vacancy at high temperatures results in a damping of the PAC signal. This damping
is not well characterized by the heuristic Marshall-Meares PAC fitting function, and
a model is proposed to fit the data in terms of three physical parameters associated
with the vacancy's motion. These parameters are the rate at which a bound oxygen
vacancy hops among equivalent sites about the probe, the rate at which a bound
vacancy detraps, and the rate at which a vacancy is trapped by cadmium. Fits of
individual spectra using this model give respective activation energies of 0.3-0.6 eV,
0.9-1.6 eV, and 0.4-0.6 eV. The uncertainty in these energies can most likely be
reduced by fitting spectra from multiple temperatures simultaneously. Despite the
large uncertainty in the fitted energies, the values are physically reasonable and indicate
that the model adequately describes the motion of the oxygen vacancy about
cadmium. / Graduation date: 1997
|
2 |
The dynamics of oxygen vacancies in zirconia : an analysis Of PAC dataAlves, Mauro A. 13 March 2003 (has links)
Nuclear techniques such as perturbed angular correlation (PAC) sample the
hyperfine interactions of a large number of probe atoms in specific crystallographic
sites. Real crystals contain static defects producing a distribution
of electric field gradients (EFGs) that add to the ideal EFG of the crystal at
any given probe site. Also, dynamic defects like moving vacancies and interstitial
atoms can be present in the crystal and contribute to the distribution
of EFGs. The distribution of EFGs leads to line broadening and a change in
the observed asymmetry parameter η since the total EFG no longer has the
symmetry of the perfect crystal. When both defects are present in a material,
obtaining quantitative information from the analysis of PAC spectra is usually very difficult since great care has to be taken to ensure that the source
of line broadening is identified correctly. In order to relate the relationship
between the static line broadening and changes in the asymmetry parameter
η, a uniform random distribution of point charges was used to simulate the
static defect EFG. PAC spectra collected on cubic niobium metal, cubic stabilized
zirconia and Nb-doped tetragonal zirconia were fitted with this model.
Although the quality of the fits is good, more work is needed to clarify the
relationship between the new model parameters and the line broadening and
asymmetry parameter derived from conventional model fits. The PAC spectra
of Nb-doped tetragonal zirconia were fitted with a conventional static model
to establish a reliable relationship between line broadening and the asymmetry
parameter when only static defects are present in a sample. To account for effects
of dynamic defects, a four state stochastic model for vacancy motion was
adapted in order to include the line broadening and changes in the asymmetry
produced by static defects. As a result, the activation energies corresponding
to the rates at which a oxygen vacancy is trapped by, detraps from, and hops
among equivalent sites about a PAC probe atom were calculated. The values
that were found are physically reasonable, indicating that the dynamics of an
oxygen vacancy around a PAC probe atom are satisfactorily described. / Graduation date: 2003
|
Page generated in 0.0449 seconds