• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 287
  • 118
  • 96
  • 77
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 10
  • 10
  • 10
  • 10
  • 7
  • Tagged with
  • 873
  • 172
  • 164
  • 126
  • 123
  • 92
  • 92
  • 77
  • 77
  • 69
  • 62
  • 61
  • 59
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Intérêts et limites des armatures tout-céramique en prothèse fixée

Hugel, Guillaume Amouriq, Yves. January 2008 (has links)
Reproduction de : Thèse d'exercice : Chirurgie dentaire : Nantes : 2008. / Bibliogr.
172

Corrosion sous contrainte par l'iode du Zircaloy-4 cinétiques de fissuration et influence de l'irradiation sur l'amorçage /

Serres, Aurélie Fregonese, Marion. January 2009 (has links)
Thèse doctorat : Matériaux : Villeurbanne, INSA : 2008. / Titre provenant de l'écran-titre. Bibliogr. p. 190-203.
173

Nouvelles synthèses diastéréosélectives d'hétérocycles azotés via la chimie du zirconium

Ahari, M'hamed Szymoniak, Jan January 2008 (has links) (PDF)
Reproduction de : Thèse doctorat : Chimie organique : Reims : 2008. / Titre provenant de l'écran titre. Bibliogr. f.
174

Effets d'irradiations sur l'oxydation du zirconium et la diffusion de l'uranium dans la zircone

Bererd, Nicolas Chevarier, Alain. Moncoffre, Nathalie. January 2003 (has links) (PDF)
Reproduction de : Thèse doctorat : Chimie : Lyon 1 : 2003. / Titre provenant de l'écran titre. 87 Réf. bibliogr.
175

Evolution and characterization of partially stabilized zirconia (7wt% Y₂O₃) thermal barrier coatings deposited by electron beam physical vapor deposition

Bernier, Jeremy Scott. January 2001 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: Deposition rate; zirconia; TBC; texture; microstructure; EB-PVD. Includes bibliographical references (p. 78-79).
176

Synthesis and characterization of zirconia based solid acid catalysts for biodiesel production

Zhang, Yue, 张悦 January 2012 (has links)
Biodiesel is a promising renewable alternative fuel to fossil energy. For the biodiesel production from low-cost feedstock, a pretreatment step is essential, which is the esterification of free fatty acids (e.g. oleic acid) in the feedstock in order to avoid soap formation and minimize catalyst deactivation. Sulfuric acid modified zirconia (H2SO4-ZrO2) is known as an effective heterogeneous catalyst for esterification. However, due to rapid 〖SO〗_4^(2-) leaching, its reusability is low and its practical use is thus largely hindered. Zirconia supported on silica (ZrO2-SiO2) serves as a kind of non-sulfated zirconia catalyst against the leaching of the active species. Moreover, the silica support offers a large surface area and excellent thermal stability, which can accommodate a number of active zirconia species. Furthermore, there are Zr-O-Si bondings at the contact area between ZrO2 and SiO2, which might result in the formation of a new strong acid species and induce an increase of the zirconia acidity accordingly. Herein, two types of ZrO2-SiO2 catalysts were prepared, by using the reverse microemulsion method and sol-gel-hydrothermal method, denoted as ZrO2-SiO2-ME and ZrO2-SiO2-SG, respectively. The as synthesized ZrO2-SiO2 were characterized by TEM, SEM, EDX, XRD, BET and IR. ZrO2-SiO2-ME demonstrated a good dispersion of ZrO2 nanoparticles, encapsulating in the monodispersed SiO2 host matrix, while ZrO2-SiO2-SG possessed the SiO2 support with a mesoporous structure, with an average pore size of ~7 nm and a surface area of 418 m2/g. The catalysts both exhibited excellent catalytic activity and stable performance in the esterification of oleic acid. Besides non-sulfated zirconia, sulfated zirconia catalysts other than traditional H2SO4-ZrO2 were also developed as solid acid catalysts for biodiesel production. Two sulfur-containing strong acids, chlorosulfonic acid (HClSO3) and (NH4)2SO4, were employed to acidify ZrO2, and two sulfated zirconia catalysts were prepared accordingly, namely HClSO3-ZrO2 and S-ZrO2. They were characterized by SEM, EDX, XRD, BET, IR, TGA and NH3-TPD. Comparing with H2SO4-ZrO2, HClSO3-ZrO2 and S-ZrO2 contained higher sulfur content and more acid sites. More importantly, both HClSO3-ZrO2 and S-ZrO2 demonstrated high catalytic activity and excellent durability in the esterification of oleic acid. It is known that consecutive esterification and transesterification reactions are suitable for direct biodiesel production and acetylation of glycerol enables the conversion of this biodiesel byproduct to a biofuel additive. Therefore, all the above mentioned catalysts were examined to compare their catalytic abilities in these reactions. Among the four catalysts, HClSO3-ZrO2 exhibited the highest catalytic activity in both reactions under optimal conditions. The thesis work here described the preparation and characterization of four types of ZrO2-based solid acid catalysts. Their catalytic activities were thoroughly investigated upon the several essential steps in biodiesel production. In addition, the synthesis condition-activity relation was studied and the synthesis and reaction conditions were delicately tuned. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
177

Twinning in hexagonal materials: application to zirconium and magnesium

Juan, Pierre-Alexandr 21 September 2015 (has links)
The main objective of this thesis is to investigate and quantify the influence of parent-twin and twin-twin interactions on the mechanical response of hexagonal close-packed metals. To study parent-twin interactions, a mean-field continuum mechanics approach has been developed based on a new twinning topology in which twins are embedded in twinned grains. A first model generalizing the Tanaka-Mori scheme to heterogeneous elastic media is applied to first and second generation twinning in magnesium. In the case of first generation twinning, the model is capable of reproducing the trends in the development of backstresses within the twin domain as observed experimentally. Applying the methodology to the case of second-generation twinning allows the identification, in exact agreement with experimental observations, of the most likely second-generation twin variants to grow in a primary twin domain. Because the elastic behavior assumption causes internal stress level magnitudes to be excessively high, the first model is extended to the case of elasto-plasticity. Using a self-consistent approximation, the model, referred to as the double inclusion elasto-plastic self-consistent (DI-EPSC) scheme, is applied to Mg alloy polycrystals. The comparison of results obtained from the DI-EPSC and EPSC schemes reveals that deformation system activities and plastic strain distributions within twins drastically depend on the interaction with parent domains. The influence of twin-twin interactions on nucleation and growth of twins is being statistically studied from zirconium and magnesium electron back-scattered diffraction scans. A new twin recognition software relying on graph theory analysis has been developed to extract all microstructural and crystallographical data. It is capable of identifying all twinning modes and all twin-twin interaction types occurring in hexagonal close-packed materials. The first results obtained from high purity Zr electron back-scattered diffraction maps reveal that twin-twin interactions hinder subsequent twin nucleation. They also show that mechanisms involved in twin growth may differ significantly for each twinning mode. A second study performed on AZ31 Mg presents statistics about low Schmid factor {10-12} tensile twins and about {10-12}-{10-12} sequential double twins coupled with a simplified version of the Tanaka-Mori scheme generalized to heterogeneous elasticity with plastic incompatibilities.
178

Mechanical Characterization of Zirconium Hydrides with High Energy X-Ray Diffraction

KERR, MATTHEW 28 September 2009 (has links)
Zirconium and its alloys are of technical importance, finding application as a structural material in the nuclear industry. Engineering components fabricated from zirconium slowly pick-up hydrogen as a result of in-reactor corrosion, degrading the components mechanical properties as a brittle hydride phase forms. This dissertation applies high energy X-ray diffraction to directly measure the mechanical properties of zirconium hydrides in the bulk and at stress concentrations in zirconium alloys. The current study is presented as a manuscript format dissertation comprised of three manuscript chapters. Chapter 3 reports the in-situ loading of hydrided Zircaloy-2 and discusses hydride/Zircaloy-2 matrix interactions as a function of applied load. Chapter 4 reports the mechanical behavior at a fatigue pre-crack in un-hydrided Zircaloy-2, comparing the results to finite element and polycrystalline plasticity models of the crack tip. Chapter 5 reports the effect of hydrides on the notch tip strain field. The three manuscript chapters are followed by a general discussion in Chapter 6 and conclusions in Chapter 7. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2009-09-27 20:32:01.455
179

Texture Evolution and Variant Selection in Zr-2.5Nb During the α-β Phase Transformation

MOSBRUCKER, PAULA L. 24 September 2010 (has links)
Zr-2.5Nb is used as the pressure tube material for 2nd and 3rd generation CANDU reactors. The physical properties of pressure tubes in service, including strength, dimensional stability, and delayed hydride cracking resistance, are largely dependent upon the crystallographic texture of the hcp α-phase, whose texture is predominantly developed during the extrusion stage of manufacturing. During extrusion and subsequent cooling, the formation of α may occur by transformation of the bcc β-phase to α according to the Burgers relationship and influenced by variant selection – that is, a preference for one or more of the twelve possible orientations of the hcp lattice relative to the bcc lattice. Variant selection has been observed in other Zr alloys, including the heat-treated zone in pressure tube welds and the bulk texture of heat-treated pressure tubes. Further, it has been proposed as a possible explanation for texture characteristics in pressure tubes that are not explained by the deformation mechanics of extrusion. However, the criteria for variant selection are unclear. In this work, an understanding of the criteria for variant selection is developed through observations of the differing mechanisms at play during both directions of transformation, from α-β and β-α. Transformation via the Burgers relationship was confirmed; the existence of variant selection is also established. In thermal cycles to the β-regime, this selection manifests as the selection of a new (0002) variant, as driven by anisotropic thermal stresses generated during heating. Upon cooling, the high-temperature β texture is inherited by the α grains via the Burgers relationship; the magnitude of the texture maxima is driven by elastic transformation strains. Further thermal cycles to the β regime demonstrate texture memory, with some development of cubic symmetry due to grain growth during the hold in the β-phase. No texture changes are observed if samples are not heated fully into the beta regime. Finally, a study of the biasing effects of both residual and external stresses is discussed. While the external stress did not appear to be capable of biasing variant selection during either heating or cooling, some texture changes were observed, likely due to deformation at high temperature. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2010-09-23 20:44:24.784
180

ADVANCED TECHNIQUES FOR THE CHARACTERIZATION OF HYDRIDED ZIRCONIUM ALLOY

ALLEN, GREGORY 18 January 2011 (has links)
Zirconium alloy pressure tubes are an important component in CANDU nuclear reactors. During operation these tubes can pick up hydrogen as a result of a corrosion reaction, which can eventually lead to the precipitation of a secondary, brittle zirconium hydride phase. Hydrides tend to first form at flaws (stress concentrations), and when they fracture can initiate a time-controlled crack growth mechanism known as delayed hydride cracking (DHC). Since DHC is a known failure mechanism for pressure tubes, and an ongoing concern in the nuclear industry, more fundamental knowledge is required about the behaviour of hydrides precipitated at flaws. Several approaches were employed in this thesis to better characterize the effects and behaviour of hydrides at such stress concentrations. High energy X-ray diffraction, as well as in-situ SEM testing coupled with digital image correlation, were used to map the strains around stress concentrations where hydrides were present. These studies highlighted important differences in the behaviour of the hydride phase and the surrounding zirconium. To gain greater insight into hydride morphology, neutron tomography was used in an attempt to measure the through-thickness hydride distribution at flaws. A finite element model was also developed and verified against the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under different conditions. Taken as a whole, these studies provide important information for improving service guidelines and avoiding conditions that favour embrittlement due to hydride precipitation. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2011-01-17 20:39:25.621

Page generated in 0.0458 seconds