• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Competition between ferromagnetic and anti-ferromagnetic couplings in Co doped ZnO with vacancies and Ga co-dopants

Jiang, Ting-Yu 14 February 2012 (has links)
Spin-polarized first-principles electronic structure and total energy calculations have been performed to better understand the magnetic properties of Co doped ZnO (ZnO:Co) with vacancies and Ga co-dopants. The paramagnetic state of ZnO:Co, in which Co ions lose their magnetic moments, has been found to be unstable. The total energy results show that acceptor-like Zn vacancies and donor-like Ga co-dopants render the anti-ferromagnetic (AFM) and ferromagnetic (FM) states to be more favorable, respectively. With O vacancies, ZnO:Co has been found to be in the weak FM state. These magnetic properties can be understood by the calculated O- and Zn-vacancies and Ga-co-dopant induced changes of the electronic structure, which suggest that AFM and FM Co-Co couplings are mediated by O 2p-Co majority (¡ô)-spin 3d hybridized states in the valence band of ZnO and O-vacancy-derived p states or Ga sp states in the ZnO band gap, respectively. For ZnO:Co with Zn vacancies (Ga co-dopants) the AFM (FM) coupling outweighs the FM (AFM) coupling and results in the AFM (FM) state, while for ZnO:Co with O vacancies, both the FM and AFM couplings are enhanced by similar degrees and result in the weak FM state. This study reveals a competition between FM and AFM couplings in ZnO:Co with vacancies and Ga co-dopants, the detailed balancing between which determines the magnetic properties of these materials.

Page generated in 0.0537 seconds