11 |
Product distribution directed modification of ZSM-5 / Maretha FourieFourie, Maretha January 2012 (has links)
Ethylene and propylene are important chemical feedstocks for the production of polyethylene and polypropylene. Ethylene and propylene can be produced by various methods including steam cracking of liquefied natural gas (LNG), naphta or light olefin fractions. The methanol to olefin (MTO) process provides an alternative means of producing ethylene and propylene, where ZSM-5 is frequently used as catalyst due to its hydrophobicity, strong acidity, molecular sieve properties and low tendency towards coking, which makes ZSM-5 one the most popular zeolite catalysts in the industry. The oil crisis 1973 and the second oil crisis in 1978 caused the development of a commercial MTO process. Mobil Research and Development Corporation built a fixed-bed pilot plant to demonstrate the feasibility of the MTO as well as methanol-to-gasoline (MTG) process. When the oil price dropped again during the 1980’s, further developments of commercial processes were stopped for the time being. However, investigations on a bench scale are still pursued, and applications for patents are still submitted.
During this study ZSM-5 was synthesized with a hydrothermal method, which produced agglomerated polycrystalline grains with characteristic ZSM-5 morphology and a Si/Al ratio of approximately 40. The synthesis time, synthesis temperature and aging time were varied while keeping all the other synthesis parameters constant in order to determine their influence on crystallite size. The synthesis time was varied between 12-72 hours, synthesis temperature was varied between 130-170°C and aging time between 30-90 minutes. Using SEM to determine crystal size, it was found that a variation in the aging time produced the largest crystallites (average of 21.6μm ± 10.8μm) while also having the largest influence on crystallite size followed by synthesis temperature (average of 13.1μm ± 4.9μm) and finally synthesis time (average of 5.7μm ± 0.4μm). In all cases XRD and SEM confirmed the formation of ZSM-5.
To evaluate the as-synthesized ZSM-5 and compare it to a commercial ZSM-5 catalyst, Catalyst A using the MTO process, ZSM-5 was synthesized for 72 hours at 170°C with an aging time of 60 minutes before synthesis. The as-synthesized as well as Catalyst A’s agglomerated polycrystalline grains were sieved into three size fractions: smaller than 75μm, 75-150μm and 150-300μm. All six ZSM-5 fractions of ZSM-5 were used as catalysts for the MTO process in a fixed bed reactor at 400°C, atmospheric pressure and a 20wt% methanol to water feed. At 3.5 hours time on stream (TOS), the intermediate 75-150μm fraction had the highest light olefin selectivity for both the as-synthesized as well as Catalyst A, followed by the 150-300μm fraction and finally the smaller than 75μm fraction with the lowest light olefin selectivity. From this results it is clear that the as-synthesised ZSM-5 did not perform as well as Catalyst A.
While the intercrystalline voids of the agglomerated ZSM-5 form second-order pores where self-diffusion is enhanced, the increased diffusional barriers created by the intercrystalline boundaries reduce the diffusion rate, promoting secondary reactions at the strong Brönsted acid sites thereby reducing ethylene and propylene selectivity. Coking reduces access to the Brönsted acid sites and plays a more influencial role for smaller crystallite sizes. Accordingly, the smaller than 75μm fraction had the lowest light olefin selectivity, while the 150-300μm fraction was probably least influenced by coking. The increased pathways for products and reagents in the 150-300μm fraction resulted in more secondary reactions taking place within this catalyst than the 75-150μm fraction explaining the superior performance of the 75-150μm fraction. Since the grain size determines the ratio of the external to the internal surface areas as well as the amount of intercrystalline boundaries in the catalyst, it follows that the catalytic activity and polycrystalline grain size ratio should actually be tailored when optimising the product distribution of the ZSM-5 catalysed MTO process. The as-synthesized ZSM-5 didn’t perform very well when compared to Catalyst A and modification of the synthesis method is recommended. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
12 |
Conversion of 2,3-butanediol over bifunctional catalystsZheng, Quanxing January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / In this study, Cu/ZSM-5 catalysts were used to catalyze the hydrodeoxygenation of 2,3-butanediol to butenes in a single reactor in the presence of hydrogen. The carbon selectivity of butenes increased with increasing SiO₂/Al₂O₃ ratio (lowering acidity of zeolite) and H₂/2,3-butanediol ratio. Cu/ZSM-5 with a SiO₂/Al₂O₃ ratio of 280 showed the best activity toward the production of butenes. On zeolite ZSM-5(280), the carbon selectivity of butenes increased with increasing copper loading and 19.2wt% of CuO showed the highest selectivity of butenes (maximum 71%). The optimal reaction temperature is around 250 °C. Experiments demonstrated that methyl ethyl ketone (MEK) and 2-methylpropanal are the intermediates in the conversion of 2,3-butanediol to butenes. The optimal performance toward the production of butene is the result of a balance between copper and acid catalytic functions.
Due to the functionalized nature of 2,3-butanediol, a variety of reactions can occur during the conversion of 2,3-butanediol, especially when multiple catalyst functionalities are present. To investigate the role of the metal (Cu) and acid sites in the process of reaction, the reaction kinetics for all major intermediate products (acetoin, MEK, 2-methylpropanal, 2-butanol and 2-methyl-1-propanol) were measured over Cu/ZSM-5(280), HZSM-5(280), and Cu/SiO₂ at 250 °C. The results showed that Cu is the active site for hydrogenation reactions, while the acidic sites on the zeolite are active for dehydration reactions. In addition, dehydration of alcohols over the zeolite is much faster than hydrogenation of ketone (MEK) and aldehyde (2-methylpropanal). A kinetic model employing Langmuir-Hinshelwood kinetics was constructed in order to predict 2,3-butanediol chemistry over Cu/ZSM-5(280). The goal of this model was to predict the trends for all species involved in the reactions. Reactions were assumed to occur on two sites (acid and metal sites) with competitive adsorption between all species on those sites.
Two different types of mesoporous materials (Al-MCM-48, Al-SBA-15) and hierarchical zeolite (meso-ZSM-5) were loaded with ~20wt% CuO and investigated in the conversion of 2,3-butanediol to butenes. The results showed that the existence of mesopores on the catalysts (Al-MCM-48 and Al-SBA-15 types) could decrease the selectivities of products from cracking reactions, especially C₃= and C₅=−C₇= by comparison with the catalyst with ~20wt% CuO loaded on the regular HZSM-5(280); meanwhile, the selectivity of C₈= from oligomerization of butenes was found to increase with increasing pore size of the catalysts. With respect to Cu/meso-ZSM-5(280) catalyst, it can be seen that the catalyst performs in a similar way to both Cu/ZSM-5(280) catalyst and mesoporous copper catalysts (Cu/Al-MCM-48 and Cu/Al-SBA-15) since both micropores (diameter of ~0.55 nm) and mesopores (pore size of ~23 nm) exist on meso-ZSM-5(280).
The results from Cu catalysts were compared with four other metal catalysts (Ni, Pd, Rh and Pt). It was found that Cu is not very active for hydrogenation of butenes, but is active for hydrogenation of carbonyl groups (C=O) to form hydroxyl groups (−OH). Pd, on the other hand, is active in further hydrogenating butenes and other unsaturated hydrocarbons. Both Ni and Rh catalysts are good for hydrogenation of olefins and cracking of heavy hydrocarbons; however, Rh is not as good as Ni for the hydrogenation of the carbonyl group (C=O) of MEK. In addition, Pt favors the formation of heavy aromatics such as 5-ethyl-1,2,3,4-tetrahydro-naphthalene, while Pd is active for the production of xylene.
|
13 |
Effect of supercritical water on coke formed during dodecane cracking with ZSM-5Guerra, Patricia 11 September 2018 (has links)
The objective of this work was to study the effect of supercritical water on coke formed on ZSM-5 during its use as a dodecane cracking catalyst. ZSM-5 coking was quantified at different reaction times, finding that the presence of supercritical water reduced coke formation by an order of magnitude or more. Coked samples were analyzed using several methods, including temperature programmed oxidation (TPO), attenuated total reflectance infrared (ATR-IR) spectroscopy, carbon-13 nuclear magnetic resonance (13C NMR), diffuse reflectance ultraviolet-visible spectroscopy (DR-UV-vis) and UV-Raman. Coked produced in the absence of SCW was formed by polycyclic aromatic hydrocarbons (PAHs) with more than 4 aromatic rings containing alkyl side chains. Coke produced in the presence of SCW was formed by aromatics with 1 to 3 aromatic rings. The characteristics of coke formed in the absence of water on ZSM-5 that had been pretreated in SCW were intermediate to those of coke formed on fresh ZSM-5 in the presence and absence of water, suggesting that the presence of water influences coke properties. It was also verified that SCW can decrease coke formation due to its effect on Bronsted acidity of the catalyst and ability to promote coke gasification. The effect of coke deposits produced in the presence and absence of SCW on the rate of ethanol dehydration, a model reaction studied under diffusion-controlled conditions, indicated that SCD/SWC coke deactivated less the catalyst than SCD coke.
|
14 |
Removal of methylene blue from aqueous solutions using hierarchical ZSM-5Mbokane, Bafana Njabulo January 2018 (has links)
Thesis (M.Sc.(Chemistry)) -- University of Limpopo, 2018. / Refer to the document / NRF-Sasol Inzalo Foundation
|
15 |
Product distribution directed modification of ZSM-5 / Maretha FourieFourie, Maretha January 2012 (has links)
Ethylene and propylene are important chemical feedstocks for the production of polyethylene and polypropylene. Ethylene and propylene can be produced by various methods including steam cracking of liquefied natural gas (LNG), naphta or light olefin fractions. The methanol to olefin (MTO) process provides an alternative means of producing ethylene and propylene, where ZSM-5 is frequently used as catalyst due to its hydrophobicity, strong acidity, molecular sieve properties and low tendency towards coking, which makes ZSM-5 one the most popular zeolite catalysts in the industry. The oil crisis 1973 and the second oil crisis in 1978 caused the development of a commercial MTO process. Mobil Research and Development Corporation built a fixed-bed pilot plant to demonstrate the feasibility of the MTO as well as methanol-to-gasoline (MTG) process. When the oil price dropped again during the 1980’s, further developments of commercial processes were stopped for the time being. However, investigations on a bench scale are still pursued, and applications for patents are still submitted.
During this study ZSM-5 was synthesized with a hydrothermal method, which produced agglomerated polycrystalline grains with characteristic ZSM-5 morphology and a Si/Al ratio of approximately 40. The synthesis time, synthesis temperature and aging time were varied while keeping all the other synthesis parameters constant in order to determine their influence on crystallite size. The synthesis time was varied between 12-72 hours, synthesis temperature was varied between 130-170°C and aging time between 30-90 minutes. Using SEM to determine crystal size, it was found that a variation in the aging time produced the largest crystallites (average of 21.6μm ± 10.8μm) while also having the largest influence on crystallite size followed by synthesis temperature (average of 13.1μm ± 4.9μm) and finally synthesis time (average of 5.7μm ± 0.4μm). In all cases XRD and SEM confirmed the formation of ZSM-5.
To evaluate the as-synthesized ZSM-5 and compare it to a commercial ZSM-5 catalyst, Catalyst A using the MTO process, ZSM-5 was synthesized for 72 hours at 170°C with an aging time of 60 minutes before synthesis. The as-synthesized as well as Catalyst A’s agglomerated polycrystalline grains were sieved into three size fractions: smaller than 75μm, 75-150μm and 150-300μm. All six ZSM-5 fractions of ZSM-5 were used as catalysts for the MTO process in a fixed bed reactor at 400°C, atmospheric pressure and a 20wt% methanol to water feed. At 3.5 hours time on stream (TOS), the intermediate 75-150μm fraction had the highest light olefin selectivity for both the as-synthesized as well as Catalyst A, followed by the 150-300μm fraction and finally the smaller than 75μm fraction with the lowest light olefin selectivity. From this results it is clear that the as-synthesised ZSM-5 did not perform as well as Catalyst A.
While the intercrystalline voids of the agglomerated ZSM-5 form second-order pores where self-diffusion is enhanced, the increased diffusional barriers created by the intercrystalline boundaries reduce the diffusion rate, promoting secondary reactions at the strong Brönsted acid sites thereby reducing ethylene and propylene selectivity. Coking reduces access to the Brönsted acid sites and plays a more influencial role for smaller crystallite sizes. Accordingly, the smaller than 75μm fraction had the lowest light olefin selectivity, while the 150-300μm fraction was probably least influenced by coking. The increased pathways for products and reagents in the 150-300μm fraction resulted in more secondary reactions taking place within this catalyst than the 75-150μm fraction explaining the superior performance of the 75-150μm fraction. Since the grain size determines the ratio of the external to the internal surface areas as well as the amount of intercrystalline boundaries in the catalyst, it follows that the catalytic activity and polycrystalline grain size ratio should actually be tailored when optimising the product distribution of the ZSM-5 catalysed MTO process. The as-synthesized ZSM-5 didn’t perform very well when compared to Catalyst A and modification of the synthesis method is recommended. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
16 |
Sólidos micro-mesoestruturados tipo zeólita ZSM-5/peneira molecular MCM-41 - síntese e estudo de propriedades.Gonçalves, Marli Lansoni 16 August 2006 (has links)
Made available in DSpace on 2016-06-02T19:56:28Z (GMT). No. of bitstreams: 1
DissMLG.pdf: 4644860 bytes, checksum: 745bf2fba935eb4bb3fc032321ab36e7 (MD5)
Previous issue date: 2006-08-16 / Universidade Federal de Sao Carlos / In the transformation of bulky molecules, the necessity of catalysts that allow the diffusion to and from the active sites located in the interior of the porous system has become of higher interest. The restriction for the diffusion of this type of molecule in zeolites has led the community to study routes that can make possible to obtain solids that allow the diffusion in mesoporous and
simultaneously possess the intrinsic properties of microporous zeolites. In this context, the objective of this work was the synthesis of micro-mesostructured Zeolite ZSM-5/MCM-41 Molecular Sieve type solids. These solids were
prepared under hydrothermal conditions in two stages. Initially was prepared a gel of ZSM-5 seeds, which was subsequently crystallized in the presence of cetyltrimetylammonium bromide (CTABr), used as structure directing agent in
the synthesis of the MCM-41. The influence of the Si/Al ratio in the seeding gel and the effect of both the time and temperature used in the preparation of such gel and during crystallization were evaluated. X-ray diffraction in the low and wide angle region, nitrogen adsorption/desorption, FTIR spectroscopy and scanning and transmission electron microscopy data evidenced the formation of micro-mesostructured ZSM-5/MCM-41 materials. It is suggested that the formation of the microporous
structure occurs by an intraparticle "solid-to-solid" process through the transformation of the walls of the mesoporous into crystalline structure. During
the growth of the crystals, the surfactant micelles are dislocated, causing loss of the symmetry of the mesoporous arrangement. However, the micelles remain unchanged in a random array, generating after calcination irregularly arranged
mesoporous, but possessing uniform diameters.
The cristallinity of the formed ZSM-5 crystals, the volume of the mesoporous and the specific surface area of the final solid were influenced by
the Si/Al ratio in the seeding gel and by the time and temperature used in the aging and during the stage of mesostructuration/crystallization. The optimization of this set of variables will allow the control of the ratio between the obtained
microporous and mesoporous phases, thus making possible the preparation of
tailor-made adsorbents and catalysts for the separation and transformation of bulky molecules. / No processamento de moléculas volumosas, é cada vez maior a necessidade de dispor-se de catalisadores que permitam a difusão para os
sítios ativos localizados no interior do sistema poroso. A restrição à difusão desse tipo de molécula em zeólitas tem levado a comunidade a estudar rotas que tornem possível a obtenção de um sólido que permita a difusão nos
mesoporos e que, ao mesmo tempo, possua as propriedades intrínsecas das zeólitas microporosas. Nesse contexto, este trabalho teve como objetivo a síntese de sólidos micro-mesoestruturados do tipo Zeólita ZSM-5/Peneira
Molecular MCM-41. Estes sólidos foram preparados sob condições hidrotérmicas em duas etapas. Inicialmente preparou-se um gel de sementes da zeólita ZSM-5, sendo estas posteriormente cristalizadas na presença de
brometo de cetiltrimetilamônio (CTABr), agente mesoestruturante utilizado na síntese da peneira molecular MCM-41. Nessas sínteses, foram avaliadas as influências da relação Si/Al no gel de síntese e o efeito do tempo e da
temperatura utilizados na etapa de preparação do gel e na de cristalização. Dados de difração de raios-X em pequenos e altos ângulos,
adsorção/dessorção de nitrogênio, espectroscopia no infravermelho e
microscopia eletrônica de varredura e de transmissão evidenciaram a formação
de materiais micro-mesoestruturados ZSM-5/MCM-41 a partir de géis de sementes , cristalizadas na presença do surfactante catiônico CTA+. Sugere-se que a formação da estrutura microporosa ocorre via um processo sólidosólido intrapartícula, com a transformação das paredes dos mesoporos em estrutura cristalina. Durante o crescimento dos cristais, as micelas do surfactante ocluídas nas partículas são deslocadas, ocasionando perda de
simetria do arranjo mesoporoso. Entretanto, as micelas permanecem inalteradas num arranjo aleatório, gerando após a calcinação mesoporos num arranjo irregular, mas possuindo diâmetros uniformes. A cristalinidade da fase ZSM-5 formada, o volume de mesoporos e a
área superficial específica do sólido final dependem da relação Si/Al no gel de sementes, do tempo e da temperatura usados durante o envelhecimento e na etapa de mesoestruturação/cristalização. A otimização desse conjunto de varáveis permitirá o controle da proporção entre as fases micro e mesoporosas possibilitando a preparação, sob medida, de novos adsorventes e catalisadores, para a separação e transformação de moléculas volumosas.
|
17 |
Generation and characterisation of catalytic films of zeolite Y and ZSM-5 on FeCrAlloy metalAl-Rubaye, Rana January 2013 (has links)
The objective of this work was the development of structured zeolite catalysts by growing of ZSM-5 and Y zeolites layers on the pre-treated FeCrAlloy wires, which could now offer technical advantage in catalytic application. The advantages of implementation of zeolitic coatings in industrial applications are that they have; lower pressure drop, high heat and mass transfer rates compared to standard pelleted or extruded catalysts. The key focus of this research was the generation of thin films of zeolite ZSM–5 and Y zeolite catalysts on the surface of a FeCrAlloy metal substrate. Using in-situ hydrothermal synthesis, the influence of the synthesis parameters such as substrate oxidation and crystallisation time on the zeolite crystallisation process in both the bulk phase (powder) and on the structured zeolite was studied and optimised. Then powder and structured Na-ZSM-5 and Na-Y were treated by calcination and ion exchange in post-synthesis treatment. Further post-synthesis modification was required in the zeolite Y case to improve the catalytic properties. The post synthetic modification of zeolite Y was carried out using acidified ammonium nitrate which was optimised to produce dealuminated zeolite Y with good crystallinity and a Si/Al = 8. Characterisation was performed after each stage of this work to optimise catalyst development using XRD, SEM, EDAX, BET, MAS-NMR, and TGA. Once the optimised zeolite Y and ZSM-5 structured catalysts prepared, cracking of n-heptane was carried out to assess the in catalytic performance compared with Y and ZSM-5 pellets in a fixed-bed reactor under the same operation conditions. The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with apparent activation energy of around 60 kJ mol-1. This research demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.
|
18 |
Elucidation of reaction pathways for catalytically cracked unsaturated lipidsBenson, Tracy John 03 May 2008 (has links)
This study investigated the cracking chemistry as model lipids were reacted over a benchmark catalyst, H-ZSM-5, and two industrially used catalysts, faujasite and silica-alumina. Initial work began with a homogeneous system in which oleic acid, an unsaturated free fatty acid, and triflic acid, a Bronsted superacid, were reacted at low temperatures. Results indicated that protonation began at the double bond with cracking occurring in the direction away from the carboxylic end and producing a multiplicity of branched saturated fatty acids. Heterogeneous cracking on H-ZSM-5 at 400°C indicated that acylglycerides initially crack due to protonation occurring on the outside surface of the catalyst. Secondary cracking formed olefins (C2 – C4) which then oligomerize to form aromatic hydrocarbons that were within the range of components for gasoline. Catalysis using faujasite and silica-alumina indicated that acylglycerides require milder cracking conditions than typical crude petroleum, indicating that lower temperatures and lower catalyst to feed ratios will be required to achieve the same reactant conversions as seen in petroleum refineries.
|
19 |
Investigations on Molecular Sieve Zeolite Membranes as Proton-Selective Ion Separators for Redox Flow BatteriesXu, Zhi 09 June 2015 (has links)
No description available.
|
20 |
Transformação de metanol em olefinas leves catalisada por zeólitas HZSM-5 / Methanol transformation in to light olefins over HZSM-5 ZeolitesZilacleide da Silva Barros Sousa 17 August 2007 (has links)
A reação de transformação de MeOH em olefinas leves foi investigada sobre zeólitas HZSM-5 com razões SiO2/Al2O3 (SAR) iguais a 30, 80 e 280. As propriedades ácidas e texturais da amostra com SAR 30 foram modificadas por impregnação com ácido fosfórico. A caracterização físico-química das amostras foi realizada empregando-se as técnicas de FRX, fisissorção de N2, DRX, DTP de NH3 e IV com adsorção de piridina. O desempenho catalítico das mesmas foi comparado tanto em condições reacionais similares (mesma T, pressão parcial de MeOH e WHSV) como em condições de isoconversão. Verificou-se, que quanto maior a SAR da zeólita, menor a densidade total e a força dos sítios ácidos presentes, sendo este efeito mais significativo para os sítios de Brönsted. O efeito do aumento da SAR favoreceu a estabilidade catalítica e a formação de olefinas leves, principalmente propeno. No caso das amostras contendo fósforo, foi observada uma redução linear na área específica BET e no volume de microporos com o aumento do teor de fósforo. Estes resultados, aliados aos obtidos por DRX, sugerem que a redução mais significativa na área específica e no volume de microporos pode ser associada à redução na cristalinidade e à formação de espécies amorfas contendo fósforo, que bloqueariam a estrutura porosa da zeólita. Não se observou alteração significativa na força dos sítios fracos, enquanto a força dos sítios fortes diminuiu significativamente. As amostras apresentando menor SAR e menor teor de fósforo foram mais ativas. Por outro lado, em condições de isoconversão de 916%, a amostra mais seletiva à formação de olefinas foi aquela com maior SAR. Dentre as amostras impregnadas, aquela contendo 4% de fósforo foi a mais seletiva a propeno, enquanto a que continha 6% foi mais seletiva a eteno. A amostra com SAR igual a 280 foi investigada variando-se a temperatura de reação (400, 500 e 540C) e a pressão parcial de metanol (0,038; 0,083 e 0,123 atm), através de um planejamento experimental do tipo Box-Benhnken (32). O rendimento otimizado em olefinas leves foi alcançado a 480C e 0,08 atm. O modelo proposto descreveu bem os dados experimentais e evidenciou a existência de uma faixa ótima de temperatura para maximização do rendimento em propeno e eteno, o qual foi também afetado pela pressão parcial de MeOH na faixa estudada.
Palavras-chave: ZSM-5, olefinas, propeno, eteno, processo MTO, fósforo. / The MeOH transformation into light olefins was investigated over HZSM-5 zeolites with SiO2/Al2O3 (SAR) = 30, 80 and 280. The acidic and textural properties of the SAR 30 were modified by impregnation with orthophosphoric acid. Textural characterization and physiochemical like FRX, fisisorption of N2, DRX, DTP of NH3 and IR with pyridine adsorption were used. The catalytic performance of the samples evaluated and compared at both isoconversion and iso-operacional. It was verified, that the increase in SAR of the zeolite reduced acid site density and strenght of the acid sites, particularly for the Brönsted acid sites, favoring the catalytic stability and the formation of light olefins, mainly propene. The characterizations indicated a linearr reduction in the specific BET surface area and in the microporous volume with the increase of the phosphorous incorporation. These results, together with over obtained by DRX, suggest that the most significant reduction in the specific area and in the microporos volume can be associated to the reduction in the cristalinity as well as to the formation of amorphous species containing phosphorous, that would block the zeolite porous structure . No significant alteration was observed in the strenght of the weak sites, although the strong acid sites strenght significantly decreased. The low SAR and slow phosphorous incorporation ware more active. On the other hand, at isoconversion conditions (916), the most selective samples to olefins formation were those with high SAR. Among the impregnated samples, the one containing 4% of phosphorous was more selective to olefins. The sample with SAR equal to 280 was investigated under different reaction temperature (400, 500 and 540C) and methanol partial pressure (0,038; 0,083 and 0,123 atm), following Box-Benhnken (32) experimental planning type. The optimized light olefins yield was reached at 480C and 0,08 atm. The proposed model described well the experimental data and evidenced the existence of a range of temperature for maximization of the propene and ethene, which was also affected by the partial pressure of methanol in the studied range.
|
Page generated in 0.0235 seconds