• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zuckerphosphate als Vorläufer von 4-Hydroxy-3(2H)-furanonen biochemische Transformation durch die Hefe Zygosaccharomyces rouxii und chemische Bildung unter physiologischen Bedingungen /

Hauck, Tobias. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Würzburg.
2

Zuckerphosphate als Vorläufer von 4-Hydroxy-3(2H)-furanonen - Biochemische Transformation durch die Hefe Zygosaccharomyces rouxii und chemische Bildung unter physiologischen Bedingungen / Sugar phosphates as precursors of 4-hydroxy-3(2H)-furanones - biochemical transformation by the yeast Zygosaccharomyces rouxii and chemical formation under physiological conditions

Hauck, Tobias January 2003 (has links) (PDF)
In der vorliegenden Arbeit werden instrumentell-analytische Studien zur enzymatischen und chemischen Bildung von 4-Hydroxy-2,5-dimethyl-3(2H)-furanon (HDMF) und 4-Hydroxy-5-methyl-3(2H)-furanon (HMF) – zwei wichtigen Aromakomponenten zahl-reicher Früchte und verarbeiteter Lebensmittel – vorgestellt. Die Studien demonstrieren erstmals die Bildung dieser Verbindungen aus Zuckerphosphaten unter physiologischen Reaktionsbedingungen. Ein Schwerpunkt der Arbeiten lag dabei auf der Bildung von HDMF aus D-Fructose-1,6-diphosphat (Fru-1,6-dP) durch den Hefestamm Zygosaccharomyces rouxii. Der Zusatz von 1-13C-Fru-1,6-dP bzw. 13C6-D-Glucose zum Nährmedium der Hefe Z. rouxii zeigte, dass ausschließlich exogen zugesetztes Fru-1,6-dP durch die Hefe zu HDMF transformiert wird. Untersuchungen, in denen der Einfluss verschiedener Wachstumsbedingungen auf die HDMF-Bildung durch Z. rouxii getestet wurde, zeigten bezüglich der HDMF-Bildung ein pH-Optimum bei pH 5.1 sowie eine maximale Produktivität der Zellen bei einer NaCl-Konzentration von 20%. Mittels einer neu entwickelten cKZE-Methode wurde für durch Z. rouxii gebildetes HDMF eine Enantiomerenanreicherung von 27%ee nachgewiesen, was eine enantioselektive Biosynthese durch Enzymsysteme der Hefe impliziert. Als Grundvoraussetzung für den Nachweis einer Enantiomerenanreicherung im HDMF-Molekül stellte sich ein schwach-saurer pH-Wert des wässrigen Mediums heraus. Dies konnte durch Ermittlung der Tautomerisierungsgeschwindigkeit des HDMF-Moleküls mittels 1H-NMR-Spektroskopie belegt werden. Anhand von HPLC-MS/MS-Analysen wurde die Bildung von HMF in zellfreien cytosolischen Rohproteinextrakte aus Z. rouxii, welche mit Fru-1,6-dP und Nicotinamidadenindinucleotiden (NAD, NADH, NADP, NADPH) inkubiert worden waren, nachgewiesen. In Substratstudien wurde HMF nach Applikation von Fru-1,6-dP, D-Fructose-6-phosphat, D-Glucose-6-phosphat, 6-Phosphogluconsäure, D-Ribose-5-phosphat (Rib-5-P) und D-Ribulose-1,5-diphosphat an cytosolische Proteinextrakte nachgewiesen. Die für die Transformationen der Hexosephosphate zu D-Ribulose-5-phosphat (Ribu-5-P) benötigten Enzyme Fructose-1,6-diphosphatase, Phosphohexose-Isomerase, Glucose-6-phosphat-Dehydrogenase und 6-Phosphogluconsäure-Dehydrogenase konnten mittels spezifischer Enzymassays in den cytosolischen Extrakten nachgewiesen werden. Gebildetes Ribu-5-P wird im Folgenden spontan in HMF umgelagert (> 1%). Die Inkubation von Phosphoribose-Isomerase mit Rib-5-P in Gegenwart von o-Phenylendiamin (o-PD) führte zur Bildung von 2-Methyl-3-(1,2-dihydroxyethyl)-quinoxalin, das anhand seiner UV-, MS- und NMR-Daten eindeutig identifiziert wurde. Daraus konnte die Bildung von 4,5-Dihydroxy-2,3-pentandion (DPD) in den Reaktionsansätzen abgeleitet werden, was durch die Synthese der entsprechenden deuterierten bzw. unmarkierten Alditolacetat-Derivate und anschließende HRGC-MS-Analyse abgesichert wurde. Durch Inkubation von 1-13C-Ribu-5-P bzw. 5-13C-Ribu-5-P mit o-PD und HPLC-MS/MS-Analyse der entstandenen Quinoxalinderivate konnte gezeigt werden, dass die Methylgruppe des DPD-Moleküls infolge einer nicht-enzymatischen Phosphat-Eliminierung gebildet wird. Nach Applikation von o-PD an reife Tomaten wurde mittels HPLC-MS/MS ebenfalls 2-Methyl-3-(1,2-dihydroxyethyl)-quinoxalin detektiert. Dieses Ergebnis impliziert ein genuines Vorkommen von DPD in Tomaten, in deren Aromaextrakten auch HMF nachgewiesen wurde. Somit ist in natürlichen Systemen ebenfalls von einer HMF-Bildung über diese Zwischenverbindung auszugehen. Anhand von HPLC-UV-MS/MS-Analysen wurde eine selektive Bildung von HDMF aus Fru-1,6-dP in Gegenwart von NADH unter milden Reaktionsbedingungen nachgewiesen. Durch Inkubation von 1-13C-Fru-1,6-dP mit [4R,S-2H2]-NADH und anschließender HRGC-MS-Analyse des gebildeten isotopen-markierten HDMF konnte gezeigt werden, dass HDMF infolge eines nicht-enzymatischen Hydrid-Transfers von NADH auf eine aus Fru-1,6-dP abgeleitete Zwischenverbindung gebildet wird. Das Hydrid-Ion wird hierbei selektiv auf C-5 oder C-6 des Kohlenhydratgrundgerüstes des Zuckerphosphates übertragen. Der Zusatz von o-PD und Fru-1,6-dP zum Z. rouxii-Nährmedium und anschließende HPLC-DAD-Analyse führte zur Detektion von drei Quinoxalinderivaten. Diese wurden anhand ihrer MS/MS-Daten und NMR-Spektren als phosphorylierte Quinoxalinderivate identifiziert, aus denen sich die Bildung von 2-Hexosulose-6-phosphat, 1-Deoxy-2,3-hexodiulose-6-phosphat und 1,4-Dideoxy-2,3-hexodiulose-6-phosphat in den Nährmedien ableiten ließ. Somit gelang erstmals der Beweis der Bildung von 1-Deoxy-2,3-hexodiulose-6-phosphat im Nährmedium, einem vielfach postulierten, aber bislang nicht nachgewiesenen Intermediat der HDMF-Bildung aus Fru-1,6-dP. Aufgrund der enantioselektiven Bildung von HDMF durch die Hefen wird daher bei der HDMF-Biosynthese durch Z. rouxii von einer Kombination aus nicht-enzymatischen Reaktionsschritten und einer durch Oxidoreduktasen der Hefezellen vermittelten Reduktion ausgegangen. / The present work represents instrumental-analytical studies on the enzymatic and chemical formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 4-hydroxy-5-methyl-3(2H)-furanone (HMF), two important flavour compounds in many fruits and processed food. The performed studies demonstrate for the first time the formation of these compounds from carbohydrate phosphates under physiological reaction conditions. Of special interest during these studies was the formation of HDMF from D-fructose-1,6-diphosphate (Fru-1,6-dP) by the yeast Zygosaccharomyces rouxii. The addition of 1-13C-D-Fru-1,6-dP and 13C6-D-glucose to the nutrient medium of Z. rouxii revealed the exclusive formation of HDMF by Z. rouxii from exogenously supplied Fru-1,6-dP. Studies dealing with the formation of HDMF by Z. rouxii under various culture conditions showed an optimal pH value of 5.1 with regard to the yield of HDMF and a maximum formation per yeast cell at 20 % sodium chloride in the nutrient medium. By means of a newly developed cKZE-method for HDMF formed by Z. rouxii an enantiomeric excess value of 27 % ee was demonstrated, implying an enantioselective biosynthesis catalysed by enzymes of the yeast. A slightly acidic pH value of the aqueous medium turned out to be essential for the detection of an enantiomeric enrichment in the HDMF molecule. This was unequivocally proved by the determination of the tautomerization velocity of the HDMF molecule by 1H-NMR spectroscopy. The formation of HMF in cell-free cytosolic protein extracts obtained from Z. rouxii incubated with Fru-1,6-dP and nicotinamide adenine dinucleotides (NAD, NADH, NADP and NADPH) was detected by means of HPLC-MS/MS analysis. HMF was formed from Fru-1,6-dP, D-fructose-6-phosphate, D-glucose-6-phosphate, 6-phosphogluconate, D-ribose-5-phosphate (Rib-5-P) and D-ribulose-1,5-diphosphate after application to cytosolic protein extracts. Specific enzyme assays revealed activity of fructose-1,6-diphosphatase, phosphohexose isomerase, glucose-6-phosphate dehydro-genase and 6-phosphogluconate dehydrogenase in the cytosolic extracts, enzymes required for the transformation of the hexose phosphates to D-ribulose-5-phosphate (Ribu-5-P). Formed Ribu-5-P is spontaneously converted to HMF (> 1 %). Incubation of ribosephosphate isomerase with Rib-5-P in presence of o-phenylenediamine (o-PD) led to the formation of 2-methyl-3-(1,2-dihydroxyethyl)-quinoxaline, which was unequivocally identified by its UV-, MS- and NMR-data. Thus, the formation of 4,5-dihydroxy-2,3-pentanedione (DPD) in the incubation mixtures could be deduced. The formation of this compound was ensured by its conversion to the respective deuterium labelled or unlabelled alditol acetate derivatives and subsequent HRGC-MS analysis. By incubation of 1-13C-Ribu-5-P as well as 5-13C-Ribu-5-P with o-PD and analysis of the respective quinoxaline derivatives by means of HPLC-MS/MS analysis we demonstrated a formation of the methyl-group in the DPD molecule in consequence of a non-enzymatic phosphate elimination. Application of o-PD to ripe tomatoes led to the detection of 2-methyl-3-(1,2-dihydroxyethyl)-quinoxaline as well, using HPLC-MS/MS analysis, implying the genuine occurrence of DPD in tomatoes. Since HMF was also detected in aroma extracts obtained from tomatoes of the same sample HMF formation in natural systems via DPD is quite possible as well. A selective chemical formation of HDMF from Fru-1,6-dP in the presence of NADH under mild reaction conditions was detected by means of HPLC-UV-MS/MS analysis. The incubation of 1-13C-Fru-1,6-dP with [4R,S-2H2]-NADH followed by HRGC-MS analysis of the formed isotopically labelled HDMF revealed, that HDMF is produced in consequence of a non-enzymatic hydride-transfer from NADH to an unknown intermediate derived from Fru-1,6-dP. The hydride-ion is selectively transferred to C-5 or C-6 of the carbohydrate skeleton of the sugar phosphate. The addition of o-PD and Fru-1,6-dP to a Z. rouxii culture medium and subsequent HPLC-DAD analysis revealed the formation of three quinoxaline derivatives. By means of their MS/MS-data and NMR-spectra these compounds were identified as phosphorylated quinoxaline derivatives derived from 2-hexosulose-6-phosphate, 1-deoxy-2,3-hexodiulose-6-phosphate and 1,4-dideoxy-2,3-hexodiulose-6-phosphate in the culture medium. Thus, for the first time the chemical formation of 1-deoxy-2,3-hexodiulose-6-phosphate in the culture medium was demonstrated, a generally expected but up to now never identified intermediate in the formation pathway of HDMF from Fru-1,6-dP. Due to the enantioselective formation of HDMF by the yeast an HDMF biosynthesis by Z. rouxii consisting of non-enzymatic reaction steps and a reduction mediated by oxidoreductases of the yeast cells was anticipated.
3

Regulace vnitřního pH kvasinek - vliv vybraných transportních proteinů / Regulace vnitřního pH kvasinek - vliv vybraných transportních proteinů

Zalom, Peter January 2011 (has links)
Intracellular pH affects nearly all biochemical processes in yeast, the processes regulating the cytosolic pH includes function of many transport proteins. In this work, the impact of selected sodium transporters on cytosolic pH has been studied in two yeast species: Saccharomyces cerevisiae and Zygosaccharomyces rouxii including wild-type and mutants with affected sodium transport. Measurements of cytosolic pH and buffering capacity have been performed using fluorescent protein probe pHluorin - a pH sensitive derivate of green fluorescence protein. Several procedures for calibration of pHluorin fluorescence response have been compared and the importance of a proper correction of the calibration curve has been demonstrated. It has been shown that cytosolic pH is influenced by the function of Nha1 transport protein in S. cerevisiae as well as in Z. rouxii but not by Sod2-22 transporter in Z. rouxii. It has been demonstrated that the buffering capacity of cytosol decrease in the presence of glucose in all strains studied.
4

Charakterisace transportních systémů pro kation draslíku v kvasince Zygosaccharomyces rouxii / Characterisation of potassium cation transport systems in the yeast Zygosaccharomyces rouxii

Stříbný, Jiří January 2011 (has links)
Characterization of potassium cation transport systems in the yeast Zygosaccharomyces rouxii Potassium has become absolutely necessary cation for living cells, including yeasts, because it plays several important roles in physiological processes. Intracellular concentration of K+ in yeasts is usually between 200 mM and 300 mM, while the external K+ concentration is ranging from molar to micromolar. To adapt to environments with low K+ content, yeast cells employ various K+ high-affinity uptake systems, e.g. Trk, Hak and K+ -ATPase, that provide cells with the sufficient amount of potassium. The recent release of the complete sequence of the osmotolerant yeast Zygosaccharomyces rouxii genome allowed us to search homologues of the known yeast potassium uptake systems. We have found just one gene encoding a putative potassium transporter homologous to the S. cerevisie TRK1. For the characterisation of transport properties and physiological roles of the product of this gene, named ZrTRK1, three approaches have been used. First, the IT tools serve to analyse sequence characteristics, phylogenetic relationships etc. The second approach involves cloning of the gene and its expression in a S. cerevisiae mutant strain lacking its own two Trk systems, characterisation of transformants' growth phenotypes and...

Page generated in 0.0511 seconds