Spelling suggestions: "subject:"a dispersion"" "subject:"a ispersion""
711 |
Temperature Effects in Optical Fiber Dispersion Compensation ModulesShenouda, Mikhail 07 1900 (has links)
This thesis presents the results for the temperature variation of the Differential Group Delay (DGD) measurements of a Dispersion Compensation Module (DCM) and interprets the results with a theoretical DGD model based on glass viscoelastic properties and estimated values of some of glass parameters. The results of our analysis demonstrate the existence of long birefringence relaxation times on the order of many hours in response to temperature changes. These results could be of significance in interpreting the behavior of optical fiber systems.
|
712 |
Turbulent mixing and dispersion in environmental flows.Venayagamoorthy, Subhas Karan. January 2002 (has links)
Stably stratified flows are common in the environment such as in the atmospheric·
boundary layer, the oceans, lakes and estuaries. Understanding mixing and dispersion
in these flows is of fundamental importance in applications such as the prediction of
pollution dispersion and for weather and climate prediction/models.
Mixing efficiency in stratified flows is a measure of the proportion of the turbulent kinetic
energy that goes into increasing the potential energy of the fluid by irreversible mixing.
This can be important for parameterizing the effects of mixing in stratified flows. In this
research, fully resolved direct numerical simulations (DNS) of the Navier-Stokes
equations are used to study transient turbulent mixing events. The breaking of internal
waves in the atmosphere could be a source of such episodic events in the
environment. The simulations have been used to investigate the mixing efficiency
(integrated over the duration of the event) as a function of the initial turbulence
Richardson number Ri = N2L2/U2, where N is the buoyancy frequency, L is the
turbulence length scale, and u is the turbulence velocity scale. Molecular effects on the
mixing efficiency have been investigated by varying the Prandtl number Pr = V/K, where
v is the viscosity and K is the scalar diffusivity. Comparison of the DNS results with grid
turbulence experiments has been carried out. There is broad qualitative agreement
between the experimental and DNS results.· However the experiments suggest a
maximum mixing efficiency of 6% while our DNS gives values about five times higher.
Reasons for this discrepancy are investigated. The mixing efficiency has also been
determined using linear theory. It is found that the results obtained for the very stable
cases converge on those obtained from DNS suggesting that strongly stratified flows
exhibit linear behaviour.
Lagrangian analysis of mixing is fundamental in understanding turbulent diffusion and
mixing. Dispersion models such as that of Pearson, Puttock & Hunt (1983) are based
on a Lagrangian approach. A particle-tracking algorithm (using a cubic spline
interpolation scheme following Yeung &Pope, 1988) was developed and incorporated
into the DNS code to enable an investigation into the fundamental aspects of mixing
and diffusion from a Lagrangian perspective following fluid elements. From the
simulations, the ensemble averaged rate of mixing as a function of time indicates
clearly that nearly all the mixing in these flows occurs within times of order 3 Vu. The
mean square vertical displacement statistics show how the stable stratification severely
inhibits the vertical displacement of fluid elements but has no effect on displacements in the transverse direction. This is consistent with the Pearson, Puttock & Hunt model.
The important link that asymptotic value of the mean square vertical displacement is a
measure of the total irreversible mixing that has occurred in the flow is made. However
the results show that the change in density of the fluid elements is only weakly
correlated to the density fluctuations during the time when most of the mixing occurs,
which contradicts a key modeling assumption of the PPH theory. Improvements to the
parameterization of this mixing are investigated.
Flow structures in stably stratified turbulence were examined using flow visualization
software. The turbulence structure for strong stratification resembles randomly
scattered pancakes that are flattened in the horizontal plane. It appears that
overturning motions are the main mechanism by which mixing occurs in these flows. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2002.
|
713 |
Asymptotic Analysis of Wave Propagation through Periodic Arrays and LayersGuo, Shiyan January 2011 (has links)
In this thesis, we use asymptotic methods to solve problems of wave propagation through infinite and finite (only consider those that are finite in one direction) arrays of scatterers. Both two- and three-dimensional arrays are considered. We always assume the scatterer size is much smaller than both the wavelength and array periodicity. Therefore a small parameter is involved and then the method of matched asymptotic expansions is applicable. When the array is infinite, the elastic wave scattering in doubly-periodic arrays of cavity cylinders and acoustic wave scattering in triply-periodic arrays of arbitrary shape rigid scatterers are considered. In both cases, eigenvalue problems are obtained to give perturbed dispersion approximations explicitly. With the help of the computer-algebra package Mathematica, examples of explicit approximations to the dispersion relation for perturbed waves are given. In the case of finite arrays, we consider the multiple resonant wave scattering problems for both acoustic and elastic waves. We use the methods of multiple scales and matched asymptotic expansions to obtain envelope equations for infinite arrays and then apply them to a strip of doubly or triply periodic arrays of scatterers. Numerical results are given to compare the transmission wave intensity for different shape scatterers for acoustic case. For elastic case, where the strip is an elastic medium with arrays of cavity cylinders bounded by acoustic media on both sides, we first give numerical results when there is one dilatational and one shear wave in the array and then compare the transmission coefficients when one dilatational wave is resonated in the array for normal incidence. Key words: matched asymptotic expansions, multiple scales, acoustic scattering, elastic scattering, periodic structures, dispersion relation.
|
714 |
Enhancing performance, durability and service life of industrial rubber products by silica and silane fillersWang, Li January 2007 (has links)
Typical rubber compounds used to manufacture industrial products such as tyres, hoses, conveyor belts, acoustics, shock pads, and engine mountings contain up to eight classes of chemical additives· including curing agents, accelerators, activators, processing aids, and antidegradants. The cure systems in these articles often consists of primary and secondary accelerators, primary and secondary activators, and elemental sulphur. Recent legislation impacting upon the working environment, safety and health has imposed a considerable burden on the manufacturers of rubber compounds to meet various obligations. The selection of raw materials and manufacturing processes that do not harm the environment is of great importance. A novel technique for preparing rubber formulations using crosslinking nanofillers such as silanised precipitated silica has been developed in this research. The silica surfaces were pre-treated with bis[3-triethoxysilylpropyl-] tetrasulphane coupling agent (TESPT).· TESPT is a sulphur containing bifunctional organosilane which chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulphur-cure systems. The tetrasulphane groups of the TESPT are rubber reactive and react in the presence of accelerator at elevated temperatures, i.e.140 -260°C, with or without elemental sulphur being present, to form crossIinks in rubbers containing chemically active double bonds for example styrene-butadiene rubber (SBR) and polybutadiene rubber (BR) .. SBR and BR rubber compounds containing 60 phr of TESPT pre-treated silica nanofiller were prepared. The silica particles were fully dispersed in the rubber, which was cured primarily by using sulphur in TESPT. The reaction between the tetrasulphane groups of TESPT and the rubbers was optimised by incorporating different accelerators and activators in the rubber. The mechanical properties of the rubber vulcanisates such as hardness, tear strength, tensile strength, elongation at break, stored' energy density at break, abrasion resistance, modulus and cyclic fatigue life were increased significantly when the treated silica filler was added. The need for the accelerator and activator was dependent on the composition of the rubber. Interestingly, the rubbers were fully cured without the use of elemental sulphur, secondary accelerator and secondary activator. As a result, a substantial reduction in the use of the curing chemicals was achieved without compromising the important properties of rubber compounds which are essential for maintaining long life and good performance of industrial rubber products in service. This approach has also helped to improve health and safety within the workplace and minimise harm to the enviromnent.Furthermore, a significant cost saving was achieved after reducing the number of curing chemicals in the rubber.
|
715 |
Liquid moulding of carbon nanoparticle filled compositesCosta, Elisabete Fernandez Reia Da January 2011 (has links)
This thesis focuses on the incorporation of carbon nanoparticles within continuous fibre reinforcements by liquid composite moulding processes, in order to provide enhanced electrical and delamination properties to the multiscale composites. The mechanisms controlling the flow and filtration of these nanoparticles during liquid composite moulding are studied, in order to develop a predictive 1-D model which allows design of the processing of these composite materials. Five different carbon nanoparticles at 0.25 wt% loading, three unmodified and one surface modified carbon nanotube systems and one carbon nanofibre system, were utilised to modify a commercial two-component epoxy resin utilised to impregnate carbon and glass reinforcements at high fibre volume fraction by resin transfer moulding. The dispersion of the nanofillers in the prepolymer was carried out by ultrasonication, high shear mixing or triple roll milling or a combination of the three. Electrical conductivity measurements of the carbon nanoparticle liquid suspensions during dispersion, alongside optical microscopy imaging and rheological analysis of these allowed the selection of the concentration of nanofiller and the appropriate dispersion technique for each nanoparticle system. The resin transfer moulding process required adaptation to incorporate the dispersion and modify degassing steps, especially when utilising unmodified carbon nanoparticles suspensions, due to their higher viscosity and tendency to be filtered. Nanoparticle filtration was identified by electrical conductivity measurements and microscopy of specimens cut at increasing distances from the inlet. Cake filtration was observed for some of the unmodified systems, whereas deep bed filtration occurred for the surface modified CNT material. Property graded composites were obtained due to filtration, where the average electrical conductivity of the carbon and glass composites produced increased by a factor of two or one order of magnitude respectively. The effect of filler on the delamination properties of the carbon fibre composites was tested under mode I. The results do not show a statistically significant improvement of delamination resistance with the presence of nanoparticles, although localised toughening mechanisms such as nanoparticle pull-out and crack bridging as well as inelastic deformation have been observed on fracture surfaces. Particle filtration and gradients in concentration resulted in non-linear flow behaviour. An 1-D analytical and a finite difference model, based on Darcy’s law accompanied by particle mass conservation and filtration kinetics were developed to describe the flow and filtration of carbon nanoparticle filled thermosets. The numerical model describes the non-linear problem by incorporating material property update laws, i.e. permeability, porosity and viscosity variations on concentration of retained and suspended particles with location and time. The finite difference model is consistent and converges to the analytical solution. The range of applicability of the analytical model is limited to lower filtration coefficients and shorter filling lengths, providing an approximate solution for through thickness infusion; whereas the numerical model presents a solution outside this range, i.e. in-plane filling processes. These models allow process design, with specified carbon nanoparticle concentration distributions achieved via modifying the nanofiller loading at the inlet as a function of time.
|
716 |
Non-covalent interactions in solutionYang, Lixu January 2013 (has links)
Non-covalent interactions taking place in solution are essential in chemical and biological systems. The solvent environment plays an important role in determining the geometry and stability of interactions. This thesis examines aromatic stacking interactions, alkyl-alkyl interactions, edge-to-face aromatic interactions, halogen bonds and hydrogen…hydrogen interactions in solution. Chapter 1 briefly introduces the different classes of non-covalent interactions, in addition to the state-of-the-art models and methods for investigating these weak interactions. The chapter finishes with a focus on dispersion interaction in alkanes and arenes. Chapter 2 investigates dispersion interactions between stacked aromatics in solution using a new class of complexes and thermodynamic double mutant cycles (DMCs). In extended aromatics, dispersion was detected as providing a small but significant contribution to the overall stacking free energies. Chapter 3 concerns the experimental measurement of alkyl-alkyl dispersion interactions in a wide range of solvents using Wilcox torsion balances. The contribution of dispersion interactions to alkyl-alkyl association was shown to be very small, with DMC, QSPR method and Hunter's solvation model. Chapter 4 studies edge-to-face aromatic interactions in series of solvents. In the open system, edge-to-face aromatic interactions were found to be sensitive to the solvent environment. The solvent effects were complicated and cannot be rationalised by a single parameter. Further analysis is needed. Chapter 5 describes a preliminary approach to investigate organic halogen…π interactions in solution using supramolecular complexes and torsion balances. Chapter 6 is a preliminary investigation of the ability of hydrogen atoms to act as H bond acceptors in silane compounds. Computations and 1H NMR demonstrated a weak interaction between silane and perfluoro-tert-butanol.
|
717 |
Nitrogen fluxes at the landscape scale : a case study in ScotlandVogt, Esther January 2012 (has links)
Nitrogen (N) fluxes show a substantial variability at the landscape scale. Emissions are transferred by atmospheric, hydrological and anthropogenic dispersion between different landscape elements or ecosystems, e.g. farms, fields, forests or moorland. These landscape N fluxes can cause impacts to the environment, such as loss of biodiversity. The aim of this study is to illustrate how landscape N fluxes can be quantified by integrating atmospheric and fluvial fluxes in a Scottish landscape of 6 km x 6 km that contains intensively managed poultry farming, extensively managed beef and sheep farming, semi-natural moorland and woodland. Atmospheric ammonia (NH3) emissions of two deep pit free range layer poultry houses were estimated by high time-resolution measurements of NH3 concentrations and meteorological variables downwind of layer poultry houses and the application of an inverse Gaussian plume model. Atmospheric NH3 concentrations and deposition fluxes across the study landscape were studied at a resolution of 25 m x 25 m. The approach combined a detailed landscape inventory of all farm activities providing high resolution NH3 emission estimates for atmospheric dispersion modelling and an intensive measurement programme of spatial NH3 concentrations for verifying modelled NH3 concentrations. The spatially diverse emission pattern resulted in a high spatial variability of modelled mean annual NH3 concentrations (0.3 to 77.9 μg NH3 m-3) and dry deposition fluxes (0.1 to >100 kg NH3-N ha-1 yr-1) within the landscape. Annual downstream fluxes and variation in spatial concentration of dissolved inorganic nitrogen (NH4 + and NO3 -) and dissolved organic nitrogen (DON) were studied in the two main catchments within the study landscape (agricultural grassland vs. semi-natural moorland catchment). The grassland catchment was associated with an annual downstream total dissolved nitrogen (TDN) flux of 14.4 kg N ha-1 yr-1, which was 66% higher than the flux of 8.7 kg ha-1 yr-1 from the moorland catchment. This difference was largely due to the NO3 - flux being one order of magnitude higher in the grassland catchment. The contribution of DON to the TDN flux varied between the catchments with 49% in the grassland and 81% in the moorland catchment. Fluvial and atmospheric N fluxes were combined to derive N budgets of the two catchments. Agricultural activities accounted for the majority of N input to the catchments, with atmospheric deposition also playing a significant role, especially in the moorland catchment. Both catchments showed large stream export fluxes compared to their net import which suggests that their capacity of N storage is limited. This thesis quantifies major N fluxes in a study landscape and shows their large spatial variability. Agricultural activities dominate landscape N dynamics. The work demonstrates the importance of considering landscape N variability when attempting to reduce the environmental impact of agricultural activities.
|
718 |
Numerical investigations of spin waves at the nanoscaleDvornik, Mykola January 2011 (has links)
This thesis contains results of numerical investigations of magnetisation dynamics in nanostructed ferromagnetic materials. Magnetic systems have been simulated using the open source micromagnetic solver: Object Oriented Micromagnetic Framework (OOMMF), and thoroughly analysed using my own software: semargl. A systematic study of collective magnonic modes confined in 2D and 3D systems of rectangular ferromagnetic nano-elements is presented. The collective character of the excitations results from the dynamic magnetic dipole field. The magnetization dynamics of isolated rectangular elements is found to be spatially non-uniform which means that the dynamic dipolar coupling is highly anisotropic. A semi-analytical theory of collective magnonic modes has been developed to evaluate the properties of the dynamic magnetic dipole field. It was found that the theory is only valid for certain eigenmodes of the isolated element. In particular the modes where the magnetic dipole coupling between the elements is much lower than the internal energy of the corresponding eigenmodes of the isolated element. It is then demonstrated that the confinement of spin waves is strongly affected by the ground state of the system. In particular it has been found that symmetry properties of the topology of 2D arrays affect the dynamics of the strongly localised modes. The effect is found to be significant for arrays of any number of elements. At the same time the relative contribution of the localized modes to the uniform response decreases with the number of elements in the array. The dispersion relation of spin waves in 2D arrays of rectangular nano-elements has been calculated for the first time using micromagnetic simulations. The form of the dispersion is used to estimate the spatial anisotropy of the dynamic dipolar coupling. Simulations of the 3D confinement of spin waves in stacks of magnetic nano-elements have been performed. The calculation of both the dispersion and spatial profiles of the corresponding magnonic modes facilitates the investigation of the localisation of collective spin waves. Furthermore the dispersion of collective magnonic modes has been calculated for stacks of rectangular nano-elements for a range of in-plane aspect ratios. Finally, a numerical method has been developed to extract the scattering parameters of magnonic logic devices. This method has been demonstrated by applying it to the simplest possible magnonic device so that the results could be compared to an analytical expression of the scattering parameters.
|
719 |
Differentiation of dispersive traits under a fluctuating range distribution in Asellus aquaticusBrengdahl, Martin January 2014 (has links)
Knowledge about dispersion is of utmost importance for understanding populations’ reaction to changes in the environment. Expansion of a population range brings with it both spatial sorting and over time, spatial selection. This means that dispersion rates increases over time at the expanding edge. Most studies have so far been performed on continuously expanding populations. This study aims to bring more knowledge about dispersal biology in dynamic systems. I studied dispersal traits in two permanent and two seasonal vegetation habitats of an isopod (Asellus aquaticus), for which differentiation between habitat types has previously been shown. I quantified differences in displacement (dispersal rate) and three morphological traits, head angle (body streamline) and leg of the third and seventh pair of legs. Isopods from the seasonal vegetation had higher displacement rates than animals from permanent vegetation. This inclines that mechanisms driving spatial selection in expanding population ranges also exist in dynamic systems. The more streamlined isopods found in seasonal sites further points towards spatial sorting by dispersion capability. Because no effect of permanence was found on leg length and there was no correlation between streamlining and displacement, the higher dispersion among animals from seasonal habitats most likely derives from behavioral differences.
|
720 |
Electronic and Magnetic Properties of Carbon-based and Boron-based Nano MaterialsGunasinghe, Rosi 22 May 2017 (has links)
The structural and electronic properties of covalently and non-covalently functionalized graphene are investigated by means of first-principles density-functional-theory. The electronic characteristics of non-covalently functionalized graphene by a planar covalent organic framework (COF) are investigated. The aromatic central molecule of the COF acts as an electron donor while the linker of the COF acts as an electron acceptor. The concerted interaction of donor acceptor promotes the formation of planar COF networks on graphene. The distinctive electronic properties of covalently functionalized fluorinated epitaxial graphene are attributed to the polar covalent C–F bond. The partial ionic character of the C–F bond results in the hyperconjugation of C–F σ-bonds with an sp2 network of graphene. The implications of resonant-orbital-induced doping for the electronic and magnetic properties of fluorinated epitaxial graphene are discussed.
Isolation of single-walled carbon nanotubes (SWNTs) with specific chirality and diameters is critical. Water-soluble poly [(m- phenyleneethynylene)- alt- (p- phenyleneethynylene)], 3, is found to exhibit high selectivity in dispersing SWNT (6,5). The polymer’s ability to sort out SWNT (6,5) appears to be related to the carbon–carbon triple bond, whose free rotation allows a unique assembly. We have also demonstrated the important role of dispersion forces on the structural and electronic stability of parallel displaced and Y-shaped benzene dimer conformations. Long-range dispersive forces play a significant role in determining the relative stability of benzene dimer. The effective dispersion of SWNT depends on the helical pitch length associated with the conformations of linkages as well as π-π stacking configurations.
We have revisited the constructing schemes for a large family of stable hollow boron fullerenes with 80 + 8n (n = 0,2,3,...) atoms. In contrast to the hollow pentagon boron fullerenes the stable structures constitute 12 filled pentagons and 12 additional hollow hexagons. Based on results from density-functional calculations, an empirical rule for filled pentagons is proposed along with a revised electron counting scheme. We have also studied the relative stability of various boron fullerene structures and structural and electronic properties of B80 bucky ball and boron nanotubes. Our results reveal that the energy order of fullerenes strongly depends on the exchange-correlation functional employed in the calculation. A systematic study elucidates the importance of incorporating dispersion forces to account for the intricate interplay of two and three centered bonding in boron nanostructures.
|
Page generated in 0.0851 seconds