1 |
Sequence stratigraphy and the development of a clinoformal carbonate ramp on an abandoned delta system: Mississippian Fort Payne--Salem Interval, KentuckyKhetani, Amy B. 01 November 2008 (has links)
Middle Mississippian ramp carbonates in Kentucky (Fort Payne to Salem interval) form a large scale depositional supersequence (0 to 500 feet thick, approximately 8 m. y. duration). It formed on and in front of the abandoned Early Mississippian Borden deltaic marine paleoshelf, which had up to 100 m of relief above the adjacent starved basin. Major facies consist of marine quartz sandstone and shale; peritidal carbonates; high-energy ramp margin, crinoidal-bryozoan grainstones; deeper ramp mounds, skeletal grainstone/packstone sheets and channel-fills interlayered with shale or calcisiltite; and slope deposits of siliceous calcisiltite. Regional slopes on the paleoshelf edge and ramp margin are 0.5 to 2.5 mIkm (less than 0.25 degrees), although clinoforms of 2 to 10 degrees occur locally associated with mounds and depositional lobes. The supersequence LST is dominated by mounds interlayered with green shaly, deeper ramp facies. The mounded units are located in a fairway that is normal to the Borden margin but parallel to the Appalachian Grainger deltaic shelf. No TST is evident, except for a glauconite horizon capping the Borden paleoshelf. The supersequence HST consists of at least eight third-order sequences (each approximately 1 m.y. duration), the older ones downlapping onto the shelf 20 to 30 m deep, the younger ones downlapping into the deeper basin (over 150 m water depth). Sequences show marked toplap with the upper sequence boundary. The third-order sequences locally have lowstand sands, some of which may be associated with a paleodrainage system off the Borden paleo shelf. They lack recognizable TSTs, but have well-developed prograding HST units of nearshore shale and peritidal dolomite, skeletal packstone/grainstone banks, and siliceous calcisiltite slope facies. The supersequence correlates with a global sea level cycle in the lower Visean terminating in a major sea-level fall. The highly clinofonned toplapping supersequence reflects this long term, sea-level fall which prevented space from being created on the old delta top. The third-order sequences, although mappable between the sections, are not easily correlated with global third order cycles. / Master of Science
|
Page generated in 0.0758 seconds