• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 370
  • 133
  • 78
  • 44
  • 31
  • 19
  • 12
  • 10
  • 9
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 838
  • 444
  • 85
  • 74
  • 69
  • 64
  • 60
  • 59
  • 54
  • 54
  • 52
  • 52
  • 49
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

In vivo measurements of the heat convection coefficient on the endocardial surface

Santos, Icaro dos, January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
62

Development and characterization of a new laser ablation technique for inductively coupled plasma-atomic emission spectrometry (ICP-AES) /

Lam, Kar-kin. January 1996 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1996. / Includes bibliographical references.
63

Investigation of matrix effects on excitation conditions of dry inductively coupled plasma using laser ablation /

Chan, Chee-yuen, George. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2000. / Includes bibliographical references.
64

Supersonic jet deposition of laser ablated silver nanoparticles for mesoscale structures

Huang, Chong, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
65

Enhancement of high power pulsed laser ablation and biological hard tissue applications

Kang, Hyun Wook, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
66

Current challenges in atrial fibrillation ablation

Davies, Edward John January 2016 (has links)
The ablative management of atrial fibrillation, despite a number of landmark discoveries, remains one of the most challenging fields in interventional electrophysiology. It is generally accepted that successful isolation of the pulmonary veins is a highly effective way of managing paroxysmal forms of AF. However, despite almost a decade of research into alternative lesion patterns, the solution to persistent AF remains beyond our grasp. A variety of strategies have been proposed to target key areas in the atria; these use various complex mapping systems, usually based on tailored lesion sets to try and improve outcomes. None have proven to be the golden bullet. We have investigated the role of a lesion set intended to alter the electrical properties of the posterior wall of the left atrium. Commonly known as the ‘box-set’, this pattern has shown promise in early studies and may provide some key insights into future developments. Surgical ablation using the Epicor system aims to deliver the box-set lesion, outcomes have previously been documented but each series has its limitations. In our series, very late outcomes are reported to show an 80% freedom from AF rate in patients with paroxysmal AF pre-operatively and only 20% in those with long-standing persistent forms. The reason behind this dramatic variation is explored through the invasive electrophysiologal assessment of both successful and unsuccessful cases. We report a clear correlation between the successful isolation of the posterior wall and long-term freedom from AF. Though surgical ablation may be an acceptable approach for some, the ultimate goal is a lesion set that can be delivered purely endocardially. We explore the outcome of one such empirical pattern based on the box-set concept delivered through linear catheter technology and report outcomes broadly similar to alternative patterns.
67

Inhibition de la réaction alcali-silice par le lithium : efficacité en milieu modèle et en matrice cimentaire et compréhension des mécanismes d’inhibition / Inhibition of the alkali-silica reaction by lithium : efficiency in model reactors and mortars and understanding of the inhibition mechanisms

Rousselet, Angélique 13 December 2016 (has links)
La réaction alcali-silice (RAS) est une réaction de dégradation des bétons. Le lithium est connu pour ses qualités d’inhibiteur de la RAS, malheureusement les quantités nécessaires à l’inhibition sont variables et les mécanismes par lesquels il agit sont encore mal connus. Les travaux menés au cours de cette thèse ont pour but d’évaluer l’efficacité du lithium à inhiber la RAS, ainsi que d’améliorer la compréhension de ses mécanismes d’action. L’efficacité de cinq composés de lithium a tout d’abord été évaluée en milieu modèle (milieu simplifié simulant la RAS), à l’aide d’un granulat réactif : le silex. Le suivi de paramètres physico-chimiques traduisant l’altération de la silice avec l’ajout de lithium a révélé que l’inhibition de la RAS n’évolue pas de manière linéaire avec la quantité de lithium introduite (effet seuil) et que le contre-ion accompagnant le lithium n’a pas d’effets sur l’inhibition. Le suivi de l’expansion d’éprouvettes de mortier contenant différentes quantités de LiOH pour trois granulats différents a également révélé la présence d’un effet seuil à l’efficacité du lithium. Afin de valoriser des déchets industriels, deux scories lithinifères ont été employées dans des mortiers et l’une d’elles s’est avérée capable d’inhiber la RAS par son contenu en lithium. Pour améliorer la compréhension des mécanismes d’inhibition, des éprouvettes de mortier dopées en LiOH ont été caractérisées par des techniques permettant de détecter le lithium telles que la ToF-SIMS. Celle-ci a révélé la présence du lithium au cœur des grains de silex dans une formulation inhibée, suggérant ainsi que le lithium inhibe la RAS en accroissant la stabilité de la silice réactive. / Alkali-silica reaction (ASR) is a deleterious reaction taking place in concrete. Lithium is known to inhibit ASR, unfortunately the quantities of lithium required to enable inhibition fluctuate with the experimental conditions and the materials tested and the mechanisms by which this element inhibits ASR are not fully understood. The study presented in this report has two goals : assessing the quantities of lithium required to inhibit ASR and improving the understanding of the inhibition mechanisms. The influence of different lithium compounds on the inhibition of ASR was studied using model reactors (concrete sub-system simulating ASR) containing a reactive flint aggregate. The degradation of silica due to ASR was assessed by different chemical and physical reaction degrees. The results led to the following conclusions: the inhibition of ASR by lithium ions evolves nonlinearly with the quantity of lithium (threshold effect) and the counter-ion accompanying the lithium does not have a significant influence on ASR inhibition. The expansive behaviour of three different aggregates in mortars containing LiOH also displayed the threshold effect observed previously. In order to recycle industrial waste, two lithium-containing slags were used in mortar bars and one of them happened to be effective to inhibit ASR. Finally, to improve the understanding of ASR inhibition, mortar bars containing LiOH were analysed by techniques capable of detecting lithium such as ToF-SIMS. The latter revealed the presence of lithium within flint particles in a non-expansive bar, which suggests that lithium inhibits ASR by stabilising reactive silica.
68

FEMTOSECOND LASER ABLATION OF SELECTED DIELECTRICS AND METALS.

Liu, Qiang 09 1900 (has links)
Ti: sapphire femtosecond laser ablation of dielectrics (fused silica and BK7 glass) and metals (Cu, Fe, Al) is presented. Results of laser -induced breakdown experiments in fused silica and BK7 glass employing 130 fs -1.7 ps, 790 nm laser pulses are reported. The fluence ablation threshold does not follow the scaling of 4>th ~ ^/2 when pulses are shorter than 1 ps. Single-shot and multi-shot (130 fs pulse) ablation of selected materials are investigated with laser wavelengths of 395 nm, 790 nm, and 1300 nm. The ablation threshold is almost independent of the laser wavelength. The surface morphologies in metals after ultrashort pulse ablation are very different from dielectrics and semiconductors. The roughness of the ablated surface depends on the thermal properties of the metal target. The preliminary TEM result from Cu single crystal that was irradiated by single laser pulses shows few defects in the center region of the ablated crater. Single-shot ablation of single-crystal Fe induces much different surface features than on selected samples of poly-crystal Fe metal. / Thesis / Master of Engineering (ME)
69

Femtosecond Laser Ablation of Si, GaAs, and InP

Borowiec, Andrzej 09 1900 (has links)
This thesis presents the study of x-ray emission from femtosecond laser micromachining and laser ablation of semiconductors. Prior to femtosecond machining experiments we investigated the nature of radiation emitted during the irradiation of solid targets with 120 femtosecond pulses with energies between 500 nJ and 0.3 mJ at a 1 kHz repetition rate. We have shown that the majority of the radiation was emitted below 10 keV with the high energy edge extending up to 25 keV. Under our experimental conditions K line emission was observed from materials with Z<32. We have also measured the x-ray dose rates during laser machining of various targets on the order of 10 mSv/h at a distance of 13 cm from the target. The implications for work pace safety, micromachining control, and potential for pulsed x-ray line sources for spectroscopic and imaging applications are discussed. In our studies of single shot femtosecond ablation of selected semiconductors: Si, GaAs, and InP, we have concentrated on the studies of microstructure and composition of the material after irradiation with 120 femtosecond pulses with energies between 2 nJ and 2 µJ. The resulting surface morphology, structure and composition of the micron scale ablation features on the semiconductors were studied by electron microscopy and atomic force microscopy. We found that no sharp threshold in the surface morphology was observed with increasing pulse power; however three ablation stages were identified based on the characteristic features of the ablation craters. TEM analysis revealed essentially no crystal damage beneath and in the vicinity of the ablation craters. In case of the binary semiconductors 5-30 nm polycrystalline grains were found over the ablated surfaces. The results were discussed in terms of the existing state of knowledge of ablation dynamics. The implications for practical micromachining applications are also discussed. / Thesis / Master of Engineering (ME)
70

Laser Ablation for Space Applications

Terragni, Jacopo 27 April 2022 (has links)
In this work, laser ablation is investigated as a possible propulsion technique for space applications.

Page generated in 0.0882 seconds