• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation of Boundary Conditions in the Presence of Unknown Moving Boundary Caused by Ablation

Molavi, Hosein, Hakkaki-Fard, Ali, Molavi, Mehdi, Rahmani, Ramin K., Ayasoufi, Anahita, Noori, Sahar 01 February 2011 (has links)
Ablative materials can sustain very high temperatures in which surface thermochemical processes are significant enough to cause surface recession. Existence of moving boundary over a wide range of temperatures, temperature-dependent thermophysical properties of ablators, and no prior knowledge about the location of the moving surface augment the difficulty for predicting the exposed heat flux at the receding surface of ablators. In this paper, the conjugate gradient method is proposed to estimate the unknown surface recession and time-varying net surface heat flux for these kinds of problems. The first order Tikhonov regularization is employed to stabilize the inverse solution. Considering the complicated phenomena that are taking place, it is shown via simulated experiment that unknown quantities can be obtained with reasonable accuracy using this method despite existing noises in the measurement data.
2

Alternative Foam Treatments For The Space Shuttle's External Tank

Dreggors, Kirsten 01 January 2005 (has links)
The Space Shuttle Columbia accident and the recent excitement surrounding Discovery's return to space brought excessive media attention to the foam products used on the External Tank (ET). In both cases, videos showed chunks of foam or ablative material falling away from the ET during lift off. This led to several years of investigation and research into the exact cause of the accident and potential solutions to avoid the problem in the future. Several design changes were made prior to the return to flight this year, but the ET still shed foam during lift off. Since the Columbia accident, the loss of foam on ETs has been a significant area of interest for NASA, United Space Alliance, and Lockheed Martin. The Columbia Accident Investigation Board did not evaluate alternative materials but certainly highlighted the need for change. The majority of the research previously concentrated on improving the design and/or the application process of the current materials. Within recent years, some research and testing has been done to determine if a glass microsphere composite foam would be an acceptable alternative, but this work was overcome by the need for immediate change to return the shuttle to flight in time to deliver supplies to the International Space Station. Through a better understanding of the foam products currently used on the ET, other products can be evaluated for future space shuttle flights and potential applications on new space vehicles. The material properties and the required functionality of alternative materials can be compared to the current materials to determine if suitable replacement products exist. This research also lends itself to the development of future space flight and unmanned launch vehicles. In this paper, the feasibility of alternative material for the space shuttle's external tank will be investigated. Research on what products are used on the ET and a set of functional requirements driving the selection of those materials will be presented. The material properties of the current ET foam products will be collected and an evaluation of how those materials' properties meet the functional requirements will be accomplished. Then significant research on polymeric foams and ablative materials will be completed to learn how these various products can be applied in this industry. With this research and analysis, the knowledge gained will be used to select and evaluate the effectiveness of an alternate product and to determine feasibility of a product change with the current ET and the importance of maintaining the shuttle launch schedule. This research will also be used to evaluate the potential application of the alternative product on future platforms. There are several possible outcomes to this research. This research could result in a recommended change to the ET foam material or a perfectly acceptable alternative material that could result in a cost or schedule impact if implemented. It is also possible that there exists no suitable alternative material given the existing functional requirements. In any case, the alternative material could have future applications on new space vehicles. A set of results from the research and analysis will be provided along with a recommendation on a future material for use on space vehicles.

Page generated in 0.0906 seconds