• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anticipating bankruptcies among companies with abnormal credit risk behaviour : Acase study adopting a GBDT model for small Swedish companies / Förutseende av konkurser bland företag med avvikande kreditrisks beteende : En fallstudie som använder en GBDT-modell för små svenska företag

Heinke, Simon January 2022 (has links)
The field of bankruptcy prediction has experienced a notable increase of interest in recent years. Machine Learning (ML) models have been an essential component of developing more sophisticated models. Previous studies within bankruptcy prediction have not evaluated how well ML techniques adopt for data sets of companies with higher credit risks. This study introduces a binary decision rule for identifying companies with higher credit risks (abnormal companies). Two categories of abnormal companies are explored based on the activity of: (1) abnormal credit risk analysis (”AC”, herein) and (2) abnormal payment remarks (”AP”, herein) among small Swedish limited companies. Companies not fulfilling the abnormality criteria are considered normal (”NL”, herein). The abnormal companies showed a significantly higher risk for future payment defaults than NL companies. Previous studies have mainly used financial features for bankruptcy prediction. This study evaluates the contribution of different feature categories: (1) financial, (2) qualitative, (3) performed credit risk analysis, and (4) payment remarks. Implementing a Light Gradient Boosting Machine (LightGBM), the study shows that bankruptcies are easiest to anticipate among abnormal companies compared to NL and all companies (full data set). LightGBM predicted bankruptcies with an average Area Under the Precision Recall Curve (AUCPR) of 45.92% and 61.97% for the AC and AP data sets, respectively. This performance is 6.13 - 27.65 percentage units higher compared to the AUCPR achieved on the NL and full data set. The SHapley Additive exPlanations (SHAP)-values indicate that financial features are the most critical category. However, qualitative features highly contribute to anticipating bankruptcies on the NL companies and the full data set. The features of performed credit risk analysis and payment remarks are primarily useful for the AC and AP data sets. Finally, the field of bankruptcy prediction is introduced to: (1) evaluate if bankruptcies among companies with other forms of credit risk can be anticipated with even higher predictive performance and (2) test if other qualitative features bring even better predictive performance to bankruptcy prediction. / Konkursklassificering har upplevt en anmärkningsvärd ökning av intresse de senaste åren. I denna utveckling har maskininlärningsmodeller utgjort en nyckelkompentent i utvecklingen mot mer sofistikerade modeller. Tidigare studier har inte utvärderat hur väl maskininlärningsmodeller kan appliceras för att förutspå konkurser bland företag med högre kreditrisk. Denna studie introducerar en teknik för att definiera företag med högre kreditrisk, det vill säga avvikande företag. Två olika kategorier av avvikande företag introduceras baserat på företagets aktivitet av: (1) kreditrisksanalyser på företaget (”AK”, hädanefter), samt (2) betalningsanmärkningar (”AM”, hädanefter) för små svenska aktiebolag. Företag som inte uppfyller kraven för att vara ett avvikande företag klassas som normala (”NL”, hädanefter). Studien utvärderar sedan hur väl konkurser kan förutspås för avvikande företag i relation till NL och alla företag. Tidigare studier har primärt utvärdera finansiella variabler för konkursförutsägelse. Denna studie utvärderar ett bredare spektrum av variabler: (1) finansiella, (2) kvalitativa, (3) kreditrisks analyser, samt (4) betalningsanmärkningar för konkursförutsägelse. Genom att implementera LightGBM finner studien att konkurser förutspås med högst noggrannhet bland AM företag. Modellen presenterar bättre för samtliga avvikande företag i jämförelse med både NL företag och för hela datasetet. LightGBM uppnår ett genomsnittligt AUC-PR om 45.92% och 61.97% för AK och AM dataseten. Dessa resultat är 6.13-27.65 procentenheter högre i jämförelse med det AUC-PR som uppnås för NL och hela datasetet. Genom att analysera modellens variabler med SHAP-värden visar studien att finansiella variabler är mest betydelsefulla för modells prestation. Kvalitativa variabler har däremot en stor betydelse för hur väl konkurser kan förutspås för NL företag samt alla företag. Variabelkategorierna som indikerar företagets historik av genomförda kreditrisksanalyser samt betalningsanmärkningar är primärt betydelsefulla för konkursklassificering av AK samt AM företag. Detta introducerar området av konkursförutsägelse till att: (1) undersöka om konkurser bland företag med andra kreditrisker kan förutspås med högre noggrannhet och (2) test om andra kvalitativa variabler ger bättre prediktive prestandard för konkursförutsägelse.

Page generated in 0.1118 seconds