1 |
The Effects of Dilute Polymer Solutions on the Shape, Size, and Roughness of Abrasive Slurry Jet Micro-machined Channels and Holes in Brittle and Ductile MaterialsKowsari, Kavin 29 November 2013 (has links)
The present study investigated the effect of dilute polymer solutions on the size, shape, and roughness of channels and holes, machined in metal and glass using a novel abrasive slurry-jet micro-machining (ASJM) apparatus. The apparatus consisted of a slurry pump and a pulsation damper connected to an open reservoir tank to generate a 140-micron turbulent jet containing 1 wt% 10-micron alumina particles.
With the addition of 50 wppm of 8-M (million) molecular weight polyethylene oxide (PEO), the widths of the channels and diameters of holes machined in glass decreased by an average amount of 25%. These changes were accompanied by approximately a 20% decrease in depth and more V-shaped profiles compared with the U-shape of the reference channels and holes machined without additives. The present results demonstrate that a small amount of a high-molecular-weight polymer can significantly decrease the size of machined channels and holes for a given jet diameter.
|
2 |
The Effects of Dilute Polymer Solutions on the Shape, Size, and Roughness of Abrasive Slurry Jet Micro-machined Channels and Holes in Brittle and Ductile MaterialsKowsari, Kavin 29 November 2013 (has links)
The present study investigated the effect of dilute polymer solutions on the size, shape, and roughness of channels and holes, machined in metal and glass using a novel abrasive slurry-jet micro-machining (ASJM) apparatus. The apparatus consisted of a slurry pump and a pulsation damper connected to an open reservoir tank to generate a 140-micron turbulent jet containing 1 wt% 10-micron alumina particles.
With the addition of 50 wppm of 8-M (million) molecular weight polyethylene oxide (PEO), the widths of the channels and diameters of holes machined in glass decreased by an average amount of 25%. These changes were accompanied by approximately a 20% decrease in depth and more V-shaped profiles compared with the U-shape of the reference channels and holes machined without additives. The present results demonstrate that a small amount of a high-molecular-weight polymer can significantly decrease the size of machined channels and holes for a given jet diameter.
|
Page generated in 0.043 seconds