• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Global stability and feedback control of boundary layer flows

Åkervik, Espen January 2008 (has links)
In this thesis the stability of generic boundary layer flows is studied from a global viewpoint using optimization methods. Global eigenmodes of the incompressible linearized Navier-Stokes equations are computed using the Krylov subspace Arnoldi method. These modes serve as a tool both to study asymptotic stability and as a reduced basis to study transient growth. Transient growth is also studied using adjoint iterations. The knowledge obtained from the stability analysis is used to device systematic feedback control in the Linear Quadratic Gaussian framework. The dynamics is assumed to be described by the linearized Navier-Stokes equations. Actuators and sensors are designed and a Kalman filtering technique is used to reconstruct the unknown flow state from noisy measurements. This reconstructed flow state is used to determine the control feedback which is applied to the Navier-Stokes equations through properly designed actuators. Since the control and estimation gains are obtained through an optimization process, and the Navier-Stokes equations typically forms a very high-dimensional system when discretized there is an interest in reducing the complexity of the equations. A standard method to construct a reduced order model is to perform a Galerkin projection of the full equations onto the subspace spanned by a suitable set of vectors, such as global eigenmodes and balanced truncation modes. / QC 20100924
2

Feedback Control of Spatially Evolving Flows

Åkervik, Espen January 2007 (has links)
<p>In this thesis we apply linear feedback control to spatially evolving flows in order to minimize disturbance growth. The dynamics is assumed to be described by the linearized Navier--Stokes equations. Actuators and sensor are designed and a Kalman filtering technique is used to reconstruct the unknown flow state from noisy measurements. This reconstructed flow state is used to determine the control feedback which is applied to the Navier--Stokes equations through properly designed actuators. Since the control and estimation gains are obtained through an optimization process, and the Navier--Stokes equations typically forms a very high-dimensional system when discretized there is an interest in reducing the complexity of the equations. One possible approach is to perform Fourier decomposition along (almost) homogeneous spatial directions and another is by constructing a reduced order model by Galerkin projection on a suitable set of vectors. The first strategy is used to control the evolution of a range of instabilities in the classical family of Falkner--Skan--Cooke flows whereas the second is applied to a more complex cavity type of geometry.</p>
3

Feedback Control of Spatially Evolving Flows

Åkervik, Espen January 2007 (has links)
In this thesis we apply linear feedback control to spatially evolving flows in order to minimize disturbance growth. The dynamics is assumed to be described by the linearized Navier--Stokes equations. Actuators and sensor are designed and a Kalman filtering technique is used to reconstruct the unknown flow state from noisy measurements. This reconstructed flow state is used to determine the control feedback which is applied to the Navier--Stokes equations through properly designed actuators. Since the control and estimation gains are obtained through an optimization process, and the Navier--Stokes equations typically forms a very high-dimensional system when discretized there is an interest in reducing the complexity of the equations. One possible approach is to perform Fourier decomposition along (almost) homogeneous spatial directions and another is by constructing a reduced order model by Galerkin projection on a suitable set of vectors. The first strategy is used to control the evolution of a range of instabilities in the classical family of Falkner--Skan--Cooke flows whereas the second is applied to a more complex cavity type of geometry. / QC 20101122

Page generated in 0.099 seconds