• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The geometric stochastic resonance and rectification of active particles

Glavey, Russell January 2015 (has links)
This thesis describes the work of three research projects, the background research that motivated the work, and the resultant project findings. The three projects concerned: (i) Geometric stochastic resonance in a double cavity, (ii) Synchronisation of geometric stochastic resonance by a bi-harmonic drive, and (iii) Rectification of Brownian particles with oscillating radii in asymmetric corrugated channels. In the project 'Geometric stochastic resonance in a double cavity', we investigated synchronisation processes for the geometric stochastic resonance of particles diffusing across a porous membrane and subject to a periodic driving force. Non-interacting particle currents were driven through a symmetric membrane pore either parallel or perpendicular to the membrane. Then, harmonic mixing spectral current components were generated by the combined action of parallel and perpendicular drives. The role of the repulsive interaction of particles as a controlling factor with potential applications to the transport of colloids and biological molecules through narrow pores was also investigated. In 'Synchronisation of geometric stochastic resonance by a bi-harmonic drive', we simulated the stochastic dynamics of an elliptical particle using the Langevin equation. The particle was simultaneously driven by low and high frequency harmonic drives across a porous inter-cavity membrane. It was observed that the particle oscillated out of phase with the low frequency drive. This effect was due to the absolute negative mobility the particle would have exhibited if the low frequency drive had been replaced by a dc static force. It was also observed that the magnitude of this out-of-phase stochastic resonance depends on how the combined action of the driving forces and noise fluctuations affect the particle orientation, and as such was shown to be sensitive to the particle shape. This emphasises the importance of particle geometry, in addition to chamber geometry, to the realisation and optimisation of geometric stochastic resonance. In the project 'Rectification of Brownian particles with oscillating radii in asymmetric corrugated channels', we simulated the transport of a Brownian particle with an oscillating radius freely diffusing in an asymmetric corrugated channel over a range of driving forces for a series of temperatures and angular frequencies of radial oscillation. It was observed that there was a strong influence of self-oscillation frequency upon the average particle velocity. This effect can be used to control rectification of biologically active particles as well as for their separation according to their activity, for instance in the separation of living and dead cells. The background research is described in Chapter One and the research findings are described along with their related projects in Chapters Two and Three.
2

Migration for Organelles and Bacteria in Insulator-Based Microfluidic Devices

January 2015 (has links)
abstract: Efficient separation techniques for organelles and bacteria in the micron- and sub-micron range are required for various analytical challenges. Mitochondria have a wide size range resulting from the sub-populations, some of which may be associated with diseases or aging. However, traditional methods can often not resolve within-species size variations. Strategies to separate mitochondrial sub-populations by size are thus needed to study the importance of this organelle in cellular functions. Additionally, challenges also exist in distinguishing the sub-populations of bio-species which differ in the surface charge while possessing similar size, such as Salmonella typhimurium (Salmonella). The surface charge of Salmonella wild-type is altered upon environmental stimulations, influencing the bacterial survival and virulence within the host tissue. Therefore, it is important to explore methods to identify the sub-populations of Salmonella. This work exploits insulator-based dielectrophoresis (iDEP) for the manipulation of mitochondria and Salmonella. The iDEP migration and trapping of mitochondria were investigated under both DC and low-frequency AC conditions, establishing that mitochondria exhibit negative DEP. Also, the first realization of size-based iDEP sorting experiments of mitochondria were demonstrated. As for Salmonella, the preliminary study revealed positive DEP behavior. Distinct trapping potential thresholds were found for the sub-populations with different surface charges. Further, DEP was integrated with a non-intuitive migration mechanism termed absolute negative mobility (ANM), inducing a deterministic trapping component which allows the directed transport of µm- and sub-µm sized (bio)particles in microfluidic devices with a nonlinear post array under the periodic action of electrokinetic and dielectrophoretic forces. Regimes were revealed both numerically and experimentally in which larger particles migrate against the average applied force, whereas smaller particles show normal response. Moreover, this deterministic ANM (dANM) was characterized with polystyrene beads demonstrating improved migration speed at least two orders of magnitude higher compared to previous ANM systems with similar sized colloids. In addition, dANM was induced for mitochondria with an AC-overlaid waveform representing the first demonstration of ANM migration with biological species. Thus, it is envisioned that the efficient size selectivity of this novel migration mechanism can be employed in nanotechnology, organelle sub-population studies or fractionating protein nanocrystals. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2015

Page generated in 0.0603 seconds