1 |
Analýza a návrh optimalizace podnikových procesů v oblasti spisové služby / Analysis and design business processes optimization in administration managementVosecký, Ondřej January 2015 (has links)
This diploma thesis is focused on optimizing administration management in the Czech telecommunication office. The thesis has three essential objectives. The first objective is the analysis of present state of the administration management using the process modelling. The second objective is to identify the real potential for improvements of the process group. That means to specify process priority, estimate current and desired levels of process maturity, identify key activities and determine the level of process description and processing framing tables. These activities are supported by the methodically theoretical text at the first part of the thesis. The evaluation of limits determining potential improvements resulted from previous chapters and is contained in the final part of this thesis. The fundamental objective of this work is to design the optimization of the process group using the form of future projects.
|
2 |
Modern Computational Physical Chemistry : An Introduction to Biomolecular Radiation Damage and Phototoxicity / Modern fysikalisk-kemisk beräkningsmetodik : En introduktion till biomolekylära strålningsskador och fototoxicitetLlano, Jorge January 2004 (has links)
<p>The realm of molecular physical chemistry ranges from the structure of matter and the fundamental atomic and molecular interactions to the macroscopic properties and processes arising from the average microscopic behaviour.</p><p>Herein, the conventional electrodic problem is recast into the simpler molecular problem of finding the electrochemical, real chemical, and chemical potentials of the species involved in redox half-reactions. This molecular approach is followed to define the three types of absolute chemical potentials of species in solution and to estimate their standard values. This is achieved by applying the scaling laws of statistical mechanics to the collective behaviour of atoms and molecules, whose motion, interactions, and properties are described by first principles quantum chemistry. For atomic and molecular species, calculation of these quantities is within the computational implementations of wave function, density functional, and self-consistent reaction field theories. Since electrons and nuclei are the elementary particles in the realm of chemistry, an internally consistent set of absolute standard values within chemical accuracy is supplied for all three chemical potentials of electrons and protons in aqueous solution. As a result, problems in referencing chemical data are circumvented, and a uniform thermochemical treatment of electron, proton, and proton-coupled electron transfer reactions in solution is enabled.</p><p>The formalism is applied to the primary and secondary radiation damage to DNA bases, e.g., absorption of UV light to yield electronically excited states, formation of radical ions, and transformation of nucleobases into mutagenic lesions as OH radical adducts and 8-oxoguanine. Based on serine phosphate as a model compound, some insight into the direct DNA strand break mechanism is given.</p><p>Psoralens, also called furocoumarins, are a family of sensitizers exhibiting cytostatic and photodynamic actions, and hence, they are used in photochemotherapy. Molecular design of more efficient photosensitizers can contribute to enhance the photophysical and photochemical properties of psoralens and to reduce the phototoxic reactions. The mechanisms of photosensitization of furocoumarins connected to their dark toxicity are examined quantum chemically.</p>
|
3 |
Modern Computational Physical Chemistry : An Introduction to Biomolecular Radiation Damage and Phototoxicity / Modern fysikalisk-kemisk beräkningsmetodik : En introduktion till biomolekylära strålningsskador och fototoxicitetLlano, Jorge January 2004 (has links)
The realm of molecular physical chemistry ranges from the structure of matter and the fundamental atomic and molecular interactions to the macroscopic properties and processes arising from the average microscopic behaviour. Herein, the conventional electrodic problem is recast into the simpler molecular problem of finding the electrochemical, real chemical, and chemical potentials of the species involved in redox half-reactions. This molecular approach is followed to define the three types of absolute chemical potentials of species in solution and to estimate their standard values. This is achieved by applying the scaling laws of statistical mechanics to the collective behaviour of atoms and molecules, whose motion, interactions, and properties are described by first principles quantum chemistry. For atomic and molecular species, calculation of these quantities is within the computational implementations of wave function, density functional, and self-consistent reaction field theories. Since electrons and nuclei are the elementary particles in the realm of chemistry, an internally consistent set of absolute standard values within chemical accuracy is supplied for all three chemical potentials of electrons and protons in aqueous solution. As a result, problems in referencing chemical data are circumvented, and a uniform thermochemical treatment of electron, proton, and proton-coupled electron transfer reactions in solution is enabled. The formalism is applied to the primary and secondary radiation damage to DNA bases, e.g., absorption of UV light to yield electronically excited states, formation of radical ions, and transformation of nucleobases into mutagenic lesions as OH radical adducts and 8-oxoguanine. Based on serine phosphate as a model compound, some insight into the direct DNA strand break mechanism is given. Psoralens, also called furocoumarins, are a family of sensitizers exhibiting cytostatic and photodynamic actions, and hence, they are used in photochemotherapy. Molecular design of more efficient photosensitizers can contribute to enhance the photophysical and photochemical properties of psoralens and to reduce the phototoxic reactions. The mechanisms of photosensitization of furocoumarins connected to their dark toxicity are examined quantum chemically.
|
Page generated in 0.0882 seconds