• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problems in the Classification Theory of Non-Associative Simple Algebras

Darpö, Erik January 2009 (has links)
In spite of its 150 years history, the problem of classifying all finite-dimensional division algebras over a field k is still unsolved whenever k is not algebraically closed. The present thesis concerns some different aspects of this problem, and the related problems of classifying all composition and absolute valued algebras. A tripartition of the class of all fields is given, based on the dimensions in which division algebras over a field exist. Moreover, all finite-dimensional flexible real division algebras are classified. This class includes in particular all finite-dimensional commutative real division algebras, of which two different classifications, along different lines, are presented. It is shown that every vector product algebra has dimension zero, one, three or seven, and that its isomorphism type is determined by its adherent quadratic form. This yields a new and elementary proof for the corresponding, classical result for unital composition algebras. A rotation in a Euclidean space is an orthogonal map that locally acts as a plane rotation with a fixed angle. All pairs of rotations in finite-dimensional Euclidean spaces are classified up to orthogonal similarity. A description of all composition algebras having an LR-bijective idempotent is given. On the basis of this description, all absolute valued algebras having a one-sided unity or a non-zero central idempotent are classified.
2

A Categorical Study of Composition Algebras via Group Actions and Triality

Alsaody, Seidon January 2015 (has links)
A composition algebra is a non-zero algebra endowed with a strictly non-degenerate, multiplicative quadratic form. Finite-dimensional composition algebras exist only in dimension 1, 2, 4 and 8 and are in general not associative or unital. Over the real numbers, such algebras are division algebras if and only if they are absolute valued, i.e. equipped with a multiplicative norm. The problem of classifying all absolute valued algebras and, more generally, all composition algebras of finite dimension remains unsolved. In dimension eight, this is related to the triality phenomenon. We approach this problem using a categorical language and tools from representation theory and the theory of algebraic groups. We begin by considering the category of absolute valued algebras of dimension at most four. In Paper I we determine the morphisms of this category completely, and describe their irreducibility and behaviour under the actions of the automorphism groups of the algebras. We then consider the category of eight-dimensional absolute valued algebras, for which we provide a description in Paper II in terms of a group action involving triality. Then we establish general criteria for subcategories of group action groupoids to be full, and applying this to the present setting, we obtain hitherto unstudied subcategories determined by reflections. The reflection approach is further systematized in Paper III, where we obtain a coproduct decomposition of the category of finite-dimensional absolute valued algebras into blocks, for several of which the classification problem does not involve triality. We study these in detail, reducing the problem to that of certain group actions, which we express geometrically. In Paper IV, we use representation theory of Lie algebras to completely classify all finite-dimensional absolute valued algebras having a non-abelian derivation algebra. Introducing the notion of quasi-descriptions, we reduce the problem to the study of actions of rotation groups on products of spheres. We conclude by considering composition algebras over arbitrary fields of characteristic not two in Paper V. We establish an equivalence of categories between the category of eight-dimensional composition algebras with a given quadratic form and a groupoid arising from a group action on certain pairs of outer automorphisms of affine group schemes

Page generated in 0.0629 seconds