• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 12
  • 7
  • 7
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 90
  • 22
  • 15
  • 15
  • 13
  • 13
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Transient Attenuated Total Reflectance Spectroscopy and Investigation of Photoinduced Kinetics in Thin Films

Simon, Anne January 2012 (has links)
The efficiency of photoconversion systems such as organic photovoltaic cells and photocatalytic water-splitting cells is largely governed by the interfacial charge transfer processes. Understanding the structure-function relationship, specifically at the molecular thin film/transparent conducting oxide interface will allow for engineering these interfaces to promote charge transfer and reduce the rate of charge recombination. Important factors that are hypothesized to influence charge transfer are morphology, chemical characteristics, electronic properties and molecular orientation. As molecules are bound to a transparent conducting oxide or incorporated into a thin film, the local solid-state molecular environment greatly influences the excited state properties of the molecule. Pathways for quenching, radiative and nonradiative decay drastically limit the excited state lifetimes. In order to investigate the photoinduced kinetics of thin films and at interfaces a instrument was developed coupling transient absorbance spectroscopy to attenuated total reflectance spectroscopy. The photoinduced kinetics of a thin film of bacteriorhodopsin was used to evaluate the instrument performance, and it was determined that 1% of a close-packed monolayer could be detected with this geometry. The properties of a molecular thin film/transparent conducting oxide were investigated by tethering zinc porphyrin to ITO. The electrochemical properties were influenced by the functional group of the binding moiety. To improve our understanding of how the solid state molecular environment affects excited states lifetimes, zinc porphyrins were incorporated into mono- and multilayer thin films and measured with transient ATR spectroscopy. Finally, multilayer films related to photocatalytic water-splitting were investigated with the incorporation of inorganic nanosheets. The nanosheets helped to create a stratified assembly for multilayer films, spatially segregating electron donor (palladium porphyrin) and electron acceptor (poly(viologen)) molecules. The role of the nanosheets in the electron transfer between the donor and acceptor was studied by monitoring the triplet state lifetimes of a palladium porphyrin with transient ATR spectroscopy.
2

Dissolved organic matter discharge in the six largest arctic rivers-chemical composition and seasonal variability

Rinehart, Amanda J. 15 May 2009 (has links)
The vulnerability of the Arctic to climate change has been realized due to disproportionately large increases in surface air temperatures which are not uniformly distributed over the seasonal cycle. Effects of this temperature shift are widespread in the Arctic but likely include changes to the hydrological cycle and permafrost thaw, which have implications for the mobilization of organic carbon into rivers. The focus of this research was to describe the seasonal variability of the chemical composition of dissolved organic matter (DOM) in the six largest Arctic rivers (Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma) using optical properties (UV-Vis Absorbance and Fluorescence) and lignin phenol analysis. We also investigated differences between rivers and how watershed characteristics influence DOM composition. Dissolved organic carbon (DOC) concentrations followed the hydrograph with highest concentrations measured during peak river flow. The chemical composition of peak-flow DOM indicates a dominance of freshly leached material with elevated aromaticity, larger molecular weight, and elevated lignin yields relative to base-flow DOM. During peak flow, soils in the watershed are still frozen and snowmelt water follows a lateral flow path to the river channels. As the soils thaw, surface water penetrates deeper into the soil horizons leading to lower DOC concentrations and likely altered composition of DOM due to sorption and microbial degradation processes. The six rivers studied here shared a similar seasonal pattern and chemical composition. There were, however, large differences between rivers in terms of total carbon discharge reflecting the differences in watershed characteristics such as climate, catchment size, river discharge, soil types, and permafrost distribution. The large rivers (Lena, Yenisei), with a greater proportion of permafrost, exported the greatest amount of carbon. The Kolyma and Mackenzie exported the smallest amount of carbon annually, however, the discharge weighted mean DOC concentration was almost 2-fold higher in the Kolyma, again, indicating the importance of continuous permafrost. The quality and quantity of DOM mobilized into Arctic rivers appears to depend on the relative importance of surface run-off and extent of soil percolation. The relative importance of these is ultimately determined by watershed characteristics.
3

Functional principal component analysis based machine learning algorithms for spectral analysis

Bie, Yifeng 07 September 2021 (has links)
The ability to probe molecular electronic and vibrational structures gives rise to optical absorption spectroscopy, which is a credible tool used in molecular quantification and classification with high sensitivity, low limit of detection (LoD), and immunity to electromagnetic noises. Spectra are sensitive to slight analyte variations, so they are often used to identify a sample’s components. This thesis proposes several methods for quick classification and quantification of analysts based on their absorbance spectra. functional Principal Component Analysis (fPCA) is employed for feature extraction and dimension reduction. For 1,000-pixel spectra data, fPCA can capture the majority variance with as few output scores as the number of expected analytes. This reduces the amount of calculation required for the following machine learning algorithms. Further, the output scores are fed into XGBoost and logistic regression for classification, and fed into XGBoost and linear regression for quantification. Our models were tested on both synthesized datasets and experimentally acquired dataset. Our models demonstrated similar performance compared to deep learning but with much faster processing speeds. For the synthesized 30 dB dataset, our model XGBoost with fPCA could reach a micro-averaged f1 score of 0.9551 ± 0.0008, while FNN-OT [1] could obtain 0.940±0.001. fPCA helped the algorithms extract the feature of each analyte; furthermore, the output scores nearly had a linear relationship with their concentrations. It was much easier for the algorithm to find the mapping function between the inputs and the outputs with fPCA, which shortened the training and testing time. / Graduate
4

Příprava nové metodiky pro screening chelatorů kobaltu / Preparation of a novel method for screeing of cobalt chelators

Moravcová, Monika January 2020 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Monika Moravcová Supervisor: Assoc. Prof. Přemysl Mladěnka, Pharm.D., Ph.D. Title of thesis: Preparation of a Novel Method for Screening of Cobalt Chelators Cobalt as a structural part of the vitamin B12 is an essential microelement for living organisms including humans. However, its excess is associated with pathological conditions. Cobalt poisoning can be caused for example by exposure to cobalt metal dust during the production of hard metals or follow the corrosion of metal hip prosthesis. Patients intoxicated by cobalt can develop different manifestations including neurological impairment, hypothyroidism or cardiomyopathy. The aim of this work is to prepare a standardized, rapid, cheap but precise method for the screening of cobalt chelators. For this purpose, spectrophotometric detection using 1-nitroso-2-nafphhol-3,6-disulfonic acid disodium salt as the indicator was used. Firstly, it was found that the addition of cobalt ions led to a clear bathochromic shift of the maximum absorbance of the indicator. The relationship between the absorbance and cobalt concentration was highly linear from 470 to 560 nm at all 4 tested pH conditions (4.5, 5.5, 6.8 and 7.5). The sensitivity of the method...
5

Amine and Pesticide Detection with Phthalocyanines

Bittner, Kyle, Dane, SCOTT, Dr 06 April 2022 (has links)
Pesticides are a growing concern around the world as they are widely increasing in use and not as highly regulated as some health and environmental hazards. As agricultural, home, and other pesticide applications continue to rise, the need for analytical testing and removal of these pesticides from our rivers, streams, and other runoffs is becoming more and more significant. Glyphosate, an active ingredient in the herbicide Roundup, is an amine compound that has a maximum contamination level of 700 ppb. This work studied the use of water soluble Iron (II) tetrasolfophthalocyanine in amine detection that could be further applied to glyphosate. Also included in this study is a glimpse of removal possibilities combining phthalocyanines with traditional adsorption media for enhanced extraction and capacity.
6

COLOR REMOVAL FROM COMBINED DYE AND FRUIT NECTAR WASTEWATER USING ADSORPTION AND MICROFILTRATION

AKINWANDE, OLUWATOBILOBA A. 29 June 2018 (has links)
No description available.
7

Estimation of Stapedius-Muscle Activation using Ear Canal Absorbance Measurements : An Application of Signal Processing in Physiological Acoustics

Ghaffari, Ghazaleh January 2013 (has links)
The stapedius muscle, which is located in the middle ear, goes into contraction when the ear is exposed to high sound intensities. This muscle activation is called ‘the acoustic reflex’. Measurement of the acoustic reflex is clinically of importance since it can reveal diagnostic information about the middle ear’s pathologies. Moreover, this muscle-activation alters the acoustic characteristics of the middle ear (i.e. the acoustic impedance and the power reflectance), which in turn, can significantly manipulate one’s perception of sounds. In the present study, these acoustic characteristics are measured in the ear canal by means of absorbance measures using equivalent Thevenin circuit theory. The quantities are then compared to form the shift responses between the baseline (before the activation) and the post-activator effect. This project investigates the shifts in power reflectance and admittance of the middle ear caused by the stapedius-muscle contraction. The wideband characterization (0.1- 8 kHz) of these acoustic reflex-induced shifts is achieved using chirp signals as a probe and through ipsilateral broadband noise activator. The data acquisition and signal processing of the project are carried out using MATLAB software. The hardware consists of National Instruments USB-6212 data acquisition interface and low noise microphone system Etymotic Research ER-10B+. A group of 10 adults including 5 males and 5 females are recruited as the participants for the project. The measurements of the reflectance shifts indicate that the most robust frequency region affected by the acoustic reflex is up to 4 kHz whereas for the admittance shifts, this region is up to 2 kHz. In addition, it is shown that the stapedius-muscle contraction leads to the attenuation of the lowfrequency transmission into the middle ear (less than 1 kHz) consistent with a stiffnesscontrolled system in this range of frequencies. In contrast, the results imply that the activation of the stapedius muscle leads to a slight enhancement of the frequency transmission in the range of 1-4 kHz (corresponding to the speech frequency band). These findings suggest a beneficial role for the stapedius-muscle contraction in the perception of speech during vocalization. Furthermore, the implemented methods in this project  can be useful in better understanding the effect of the stapedius-muscle contraction on the speech perception both in normal hearing and hearing impaired persons.
8

EVALUATION OF ALGAE CONCENTRATION IN MANURE BASED MEDIA

Pecegueiro do Amaral, Maira Freire 01 January 2012 (has links)
Algae can be used to treat wastewater and manure while producing a feedstock for renewable energy. Algae require nutrients to achieve their maximum growth and manure could provide those nutrients, thereby reducing the cost of algae production and the impact of manure treatment. Algae concentration during cultivation is a critical variable that is difficult to measure due to the high concentration of suspended solids present in manure. This dissertation addresses methods to measure algae concentration in the presence of manure solids. Quantifying the algae concentration gravimetrically or by optical density was unreliable due to manure solids interfering with the measurement. Cell counting to determine algae concentration was accurate but time consuming, subjective, required dilution of concentrated samples and only small sample volumes could be measured. Chlorophyll extraction was a consistent method to determine algae concentration in manure based media, but the model had to be adjusted to account for solids interference. The proposed equation predicted chlorophyll concentration from Chlorella vulgaris in dairy manure better than the reference equation. Different algae strains (Chlorella vulgaris, Cylindrocystis sp, and Scenedesmus sp.) and manure sources (dairy, beef, swine, and sheep) were used to validate the proposed equation and all combinations had a linear relationship between actual and predicted chlorophyll concentration, but not all comparisons followed a 1:1 reference line. Even with chlorophyll extraction the manure solids interfered with the chlorophyll measurement and calibrations had to be developed based on manure type. A method based on spectral deconvolution was used to quantify algae concentration in the presence of manure without chlorophyll extraction. Various manure-algae mixtures were scanned with a spectrophotometer. Algae concentration was accurately determined with the four manure sources. Measuring algae concentration required absorbance spectra from 600 to 700 nm and manure solids concentration between 280 and 350 nm. Spectral deconvolution was able to differentiate algae concentration and manure solids concentration with a Pearson coefficient of 95.3% and 99.8% respectively. This method proved to be an accurate and efficient method for estimating algae and manure solids content in unprocessed samples. A critical factor was utilizing appropriate reference spectra.
9

Combined coagulation-microfiltration process for dye and fruit drink wastewater treatment

Eguagie, Alexander Ekenatanse January 2017 (has links)
No description available.
10

Evaluation de la pression intracrânienne absolue par une technologie non invasive auditive / Evaluation of absolute intracranial pressure by non-invasive auditory technology

Gonzalez Torrecilla, Sandra 06 September 2019 (has links)
Il n'existe pas de méthode non invasive validée pour déterminer la valeur absolue de la pression intracrânienne (PIC). Le liquide céphalorachidien (LCS) et le liquide cochléaire sont reliés par l'aqueduc cochléaire. Le but de ce projet est d'utiliser l'absorbance de l'oreille, optimale lorsque les structures vibrantes sont en position de repos, de sorte que les étriers lorsque la pression à l'extérieur de l'oreille (dans le conduit auditif externe -P_cae ) contrarie la PIC par les osselets de l'oreille moyenne. Les sujets ont été testés dans différentes positions d'inclinaison du corps, ce qui augmente la PIC, à l'aide d'un tympanomètre à large bande. 78 oreilles (sujets témoins entre 20 et 30 ans) ont montré que l'absorbance est maximale à toutes les fréquences à P_cae = 0 mmH2O en position début, elle diminue de façon complexe à P_cae zéro, mais à nouveau identique l'absorbance maximale à P_cae = 13 mm H2O ± 7 en position allongée, et 23 mm H2O ± 14 en position Trendelenburg (-30°), en 68 oreilles sur 78. Les 10 oreilles restantes présentaient un dysfonctionnement anatomique. Un modèle physique a été établi à partir d'un modèle d'oreille électromécanique classique, qui reproduit le comportement observé en attribuant à la PIC la cause des changements d'absorbance et en prédisant la capacité du P_cae pour compenser les changements d'absorbance dus à la PIC. De plus, 3 patients traités par un test de perfusion ont été testés, ainsi que 2 patients traités par ponction lombaire. Ces patients ont montré l'effet de la pression positive et négative dans les courbes d'absorbance. La littérature permet d'établir une corrélation entre la PIC absolue (dans chaque position du corps) et l'absorbance, nous pouvons conclure qu'en raison de la géométrie de l'oreille moyenne, la relation d'équilibre entre les valeurs absolues est PIC = 15 x P_cae , où 15 est le rapport des surfaces entre la MT et la platine de l’étrier. Des sujets suivis par une mesure invasive de la PIC seront nécessaires pour la continuation de cette étude. / There is no validated non-invasive method for determining the absolute value of intracranial pressure (ICP). Ear connect cerebrospinal fluid (CSF) and cochlear fluid via cochlear aqueduct. The goal of this project is to use ear absorbance, optimal when the vibrating structures are in resting position, so the stapes when the pressure outside the ear (in the external ear canal -Peec) counteracts the ICP through the middle ear ossicles. Subjects are testing in different tilt body position, which increase ICP, using a tympanometer Wideband. 78 ears of control subjects between 20 and 30 years have shown that the absorbance is maximum at all frequencies at Peec = 0 mmH2O in standing posture, decreases in a complex way at zero Peec, but again identical to the maximum absorbance at Peec = 13 mm H2O ± 7 in supine, and 23 mm H2O ± 14 in Trendelenburg posture (-30 °), this in 68 ears out of 78. The remaining 10 ears had an anatomical dysfunction. A physical model was established from a classical electromechanical ear model, which reproduces the observed behavior by attributing to the ICP the cause of changes in absorbance and predicting the ability for Peec to offset the absorbance changes due to ICP. Furthermore, 3 patients treated with a perfusion test were tested as well as 2 patients treated by a lumbar puncture. These patients showed the effect of positives and negatives pressure in absorbance curves. Literature make possible a correlation between absolute ICP (in every tilt body position) and absorbance, we can conclude that due to the geometry of the middle ear, the equilibrium relationship between absolute values is ICP = 15 x Peec, where 15 is the ratio of the areas between the tympanic membrane and the stape plate. Subjects tested by invasive measurement of ICP will be required for the continuation of this study.

Page generated in 0.0486 seconds