1 |
Rubberized cement-based composite as material for large surface applications : effect of the rubber-cementitious matrix bond / Composite caoutchouté à base de ciment utilisé comme matériau pour les grandes surfaces : effet de la liaison de matrice caoutchouc-cimentPham, Ngoc Phuong 13 July 2018 (has links)
La capacité de déformation améliorée et la résistance à la fissuration par retrait rendent les composites cimentaire caoutchoutés adaptés aux applications de grande surface telles que les chaussées et les rechargements minces adhérents à base cimentaire. Cependant, le défaut d'adhérence entre les agrégats de caoutchouc et la matrice cimentaire, bien connu, demeure nuisible aux propriétés mécaniques et de transferts de ces matériaux. De plus, en raison de la faible rigidité des granulats caoutchouc, il est universellement accepté une réduction de certaines propriétés mécaniques des composites caoutchoutés à base de ciment. Néanmoins, leurs propriétés de transfert pourraient être compétitives avec le mortier à base de granulats naturels si la liaison à l'interface caoutchouc-ciment est améliorée. Afin d'améliorer l'interface, les granulats caoutchouc ont d'abord été revêtus d'un copolymère styrène-butadiène et après densification complète de ce copolymère à la surface des agrégats caoutchouc, ils ont été incorporés au mélange cimentaire. Dans un premier temps, une analyse microstructurale utilisant la microscopie électronique à balayage (MEB), la spectrométrie de rayons X à dispersion d'énergie (EDS) et la diffraction des rayons X (DRX) a permis de préciser que la pâte de ciment adhérait fermement aux granulats caoutchouc revêtus de copolymère. Dans un second temps, les propriétés mécaniques et de transfert de ce mortier ont ensuite été comparées à celles du mortier témoin (granulats naturels) et de deux autres mortiers caoutchoutés dans lesquels l'un d'entre eux a été ajouté un désentraineur d'air pour produire un mélange caoutchouté ayant la même teneur en air que le mortier témoin. Les résultats ont démontré une interface améliorée du caoutchouc-ciment fournissant une amélioration significative des propriétés de transfert telles que la perméabilité à l'air et l'absorption capillaire d'eau. Cependant, la diminution des propriétés mécaniques (résistance à la compression et module d'élasticité) demeure en raison de la faible rigidité des granulats caoutchouc. Quant à la résistance à la traction et la résistance résiduelle post-pic témoignent d'une énergie de rupture plus élevées dans le cas de granulats revêtus du copolymère, démontrant un effet de pontage amélioré rendu possible par la liaison entre les granulats caoutchouc et la matrice de ciment. Cet effet de pontage a également contribué à améliorer la résistance des composites caoutchoutés à la fissuration par retrait empêché Afin d'étayer les effets d'une interface caoutchouc-ciment améliorée, la durabilité des mortiers caoutchoutés dans des environnements agressifs a été étudiée. En ce qui concerne l'attaque à l'acide acétique, une faible profondeur dégradée et une réduction de la perte de masse et de résistance à la compression des mortiers caoutchoutés revêtus de copolymère ont été observés par rapport au mortier témoin. Le mortier caoutchouté enduit de copolymère se comporte également mieux en empêchant la diffusion du sulfate de sodium dans le composite. La dégradation des mortiers dans des environnements agressifs a également été évaluée sur la base d'une variable d'endommagement. Il en ressort que les matériaux caoutchoutés revêtus de copolymère étaient plus durables que les matériaux non traités exposés à des environnements agressifs. / Properties of improved strain capacity and high shrinkage cracking resistance make rubberized cement-based composites suitable for large surface applications such as cement-based pavements and thin bonded overlays. However, bond defect between rubber aggregates (RA) and cement matrix is well-known and detrimental to properties of rubberized cement-based materials. It is universally accepted a reduction in some mechanical properties of rubberized cement-based composites mainly due to low stiffness of RA. Nevertheless, their transfer properties could indeed be competitive with control mortar (without RA) if bond at rubber-cement matrix interface is improved. In order to enhance the interface, RA were firstly coated with styrene-butadiene copolymer and after complete densification of this copolymer on surface of RA, they were mixed with the pre-mixed cementitious mixture. Microstructural analysis using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS), and X-Ray Diffraction (XRD) clarified that cement paste bonded firmly on copolymer-coated RA. Mechanical and transfer properties of this mortar were then compared to that of control mortar and two rubberized mortars in which one of them air-detraining admixture was added to produce rubberized mixture with the similar air content as the control mortar. Findings have demonstrated an enhanced rubber-cement matrix interface provided a significant improvement on transfer properties such as air permeability and water capillary absorption. However, a reduction in mechanical properties (compressive strength and modulus of elasticity) was still observed due to low stiffness of RA. Rubber coating appeared to limit the reduction in tensile strength and to result in a higher residual post-peak strength and fracture energy, demonstrating an improved material bridging effect made possible by the bond between RA and cement matrix. The bridging effect also contributed to improve resistance of rubberized composites to shrinkage cracking even under high restrained conditions. Based on above-mentioned characteristics, the study further investigated the durability of rubberized mortars under aggressive environments to observe the effects of RA incorporation and of an enhanced rubber-cement matrix interface. Regarding acetic acid attack, a low degraded depth and a reduction in loss of both mass and compressive strength of rubberized mortars, especially the one incorporating copolymer-coated RA, were observed compared to the ones of the control mortar. The coated rubberized mortar also behaves better in preventing sodium sulfate diffusion into the composite. The degradation of mortars under aggressive environments was also evaluated based on a damage variable, which was defined as a relative change in equivalent load-resisting area of mortar specimens between their original condition and at a given time when they were exposed to acid or sulfate solutions. From damage variable values, it can be concluded that coated rubberized mortar was more durable than the untreated one against aggressive environments. The durability of untreated and coated rubberized mortars under freeze-thaw cycles was also carried out and compared to that of control mortar. The rubberized cement- based composites were more resistant to freezing and thawing than the control one, especially in terms of dimensional expansion. The better performance can be attributed to high energy absorption of RA and to higher porosity, lower water capillary absorption and high strain capacity of rubberized mortars. Rubber coating, even reducing the permeability of rubberized cement-based composites, still remained high durability of their applications under frost environment.
|
2 |
Actual durability-related properties of concrete / Propriétés de durabilité du béton dans les structuresValente Monteiro, André 19 January 2016 (has links)
Actuellement, il est largement reconnu que la durabilité des structures en béton armé, due à la corrosion des armatures engendrée par la carbonatation ou la pénétration des chlorures, peut être affectée largement par les conditions de cure et de serrage du béton coulé en place. Toutefois, les effets de ces conditions sur la qualité du béton ne sont pas encore entièrement comprises, puisqu'elles sont habituellement négligées (ou traitées superficiellement) dans les méthodologies actuelles de performance utilisées pour la spécification et contrôle de sa durabilité. Dans ce travail sont étudiés les effets des conditions habituelles de mise en place (y compris le serrage) et cure sur les propriétés de durabilité du béton, à savoir, la résistance à la carbonatation accélérée, le coefficient de migration des chlorures (dans des conditions non stationnaires), l'absorption d'eau et la perméabilité aux gaz (méthode CEMBUREAU). À cette fin, plusieurs bétons de différent composition, sans et avec cendres volantes, ont été soumis à deux principaux programmes expérimentaux. Dans le premier programme, trois bétons ont été soumis à une cure humide dans le laboratoire à différentes températures, entre 5 °C et 60 °C, et testés à différents âges, entre 28 et 182 jours, pour quantifier l'effet isolé de la température de cure sur les propriétés de durabilité du béton. Dans le deuxième programme, plusieurs éléments (dalles, poutres et poteaux) ont été coulés sur chantier, pendant l'hiver et l'été, après avoir été soumis à deux conditions différentes de serrage, vibré et non vibré, et démoulés à différentes à 24 h et 72 h. Les propriétés de durabilité du béton près de la surface et de cœur des éléments (propriétés réelles) ont ensuite été mesurées à différents âges, entre 28 et 364 jours, et comparées avec les propriétés des échantillons vibrés et curés en conditions normalisées (propriétés potentielles). / It is widely recognized that the long-term durability of reinforced concrete structures related to carbonation- and chloride-induced corrosion can be detrimentally affected by on-site placing and curing conditions of concrete. However, the effects of these conditions on concrete durability are still not fully understood, being usually overlooked in current performance-based specifications and control of concrete durability. In this work, the effects of realistic placing (including compaction) and curing conditions on the concrete durability-related properties most used in performance-based specifications are studied, such as the accelerated carbonation resistance, chloride migration coefficient (non-steady state conditions), water absorption and gas permeability (CEMBUREAU method). For that purpose, several concretes of different composition, with and without fly ash addition, were subjected to two main experimental programs. In the first program, the concretes were cured in the laboratory under several temperature regimes, ranging from 5 ºC to 60 ºC, and then tested at different ages, from 28 to 182 days, in order to evaluate the isolated effect of curing temperature on their durability-related properties. In the second program, several concrete elements (slabs, beams and columns) were cast outdoors, during the winter and summer, and subjected to different compaction (vibrated and not vibrated) and curing (demoulded after 24 h and 72 h) conditions. The durability-related properties of the inner and outermost concrete of the elements (actual properties) were then measured at different ages, from 28 to 364 days, and compared with those of standard specimens made of the same concrete (potential properties).
|
Page generated in 0.074 seconds