• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eléments finis courbes et accélération pour le transport de neutrons / Curved finite elements and acceleration for the neutron transport

Moller, Jean-Yves 10 January 2012 (has links)
La modélisation des réacteurs nucléaires repose sur la résolution de l'équation de Boltzmann linéaire. Pour la résolution spatiale de la forme stationnaire de cette équation, le solveur MINARET utilise la méthode des éléments finis discontinus sur un maillage triangulaire non structuré afin de pouvoir traiter des géométries complexes. Cependant, l'utilisation d'arêtes droites introduit une approximation de la géométrie. Autoriser l'existence d'arêtes courbes permet de coller parfaitement à la géométrie, et dans certains cas de diminuer le nombre de triangles du maillage. L'objectif principal de cette thèse est l'étude d'éléments finis sur des triangles possédant plusieurs bords courbes. Le choix des fonctions de base est un des points importants pour ce type d'éléments finis. Un résultat de convergence a été obtenu sous réserve que les triangles courbes ne soient pas trop éloignés des triangles droits associés. D'autre part, un solveur courbe a été développé pour traiter des triangles avec plusieurs bords courbes. Une autre partie de ce travail porte sur l'accélération de la convergence des calculs. En effet, la résolution du problème est itérative et peut converger très lentement. Une méthode d'accélération dite DSA (Diffusion Synthetic Acceleration) permet de diminuer le nombre d'itérations et le temps de calcul. L'opérateur de diffusion est utilisé comme un préconditionneur de l'opérateur de transport. La DSA a été mise en oeuvre en utilisant une technique issue des méthodes de pénalisation intérieure. Une analyse de Fourier en 1D et 2D permet de vérifier la stabilité du schéma pour des milieux périodiques avec de fortes hétérogénéités / To model the nuclear reactors, the stationnary linear Boltzmann equation is solved. After discretising the energy and the angular variables, the hyperbolic equation is numerically solved with the discontinuous finite element method. The MINARET code uses this method on a triangular unstructured mesh in order to deal with complex geometries (like containing arcs of circle). However, the meshes with straight edges only approximate such geometries. With curved edges, the mesh fits exactly to the geometry, and in some cases, the number of triangles decreases. The main task of this work is the study of finite elements on curved triangles with one or several curved edges. The choice of the basis functions is one of the main points for this kind of finite elements. We obtained a convergence result under the assumption that the curved triangles are not too deformed in comparison with the associated straight triangles. Furthermore, a code has been written to treat triangles with one, two or three curved edges. Another part of this work deals with the acceleration of transport calculations. Indeed, the problem is solved iteratively, and, in some cases, can converge really slowly. A DSA (Diffusion Synthetic Acceleration) method has been implemented using a technique from interior penalty methods. A Fourier analysis in 1D and 2D allows to estimate the acceleration for infinite periodical media, and to check the stability of the numerical scheme when strong heterogeneities exist
2

Eléments finis courbes et accélération pour le transport de neutrons

Moller, Jean-Yves 10 January 2012 (has links) (PDF)
La modélisation des réacteurs nucléaires repose sur la résolution de l'équation de Boltzmann linéaire. Nous nous sommes intéressés à la résolution spatiale de la forme stationnaire de cette équation. Après discrétisation en énergie et en angle, l'équation hyperbolique est résolue numériquement par la méthode des éléments finis discontinus. Le solveur MINARET utilise cette méthode sur un maillage triangulaire non structuré afin de pouvoir traiter des géométries complexes (comprenant entre autres des arcs de cercle). Cependant, l'utilisation d'arêtes droites introduit une approximation de la géométrie. Autoriser l'existence d'arêtes courbes permet de coller parfaitement à la géométrie, et dans certains cas de diminuer le nombre de triangles du maillage. L'objectif principal de cette thèse est l'étude d'éléments finis sur des triangles possédant un ou plusieurs bords courbes. Le choix des fonctions de base est un des points importants pour ce type d'éléments finis. Un résultat de convergence a été obtenu sous réserve que les triangles courbes ne soient pas trop éloignés des triangles droits associés. D'autre part, un solveur courbe a été développé pour traiter des triangles avec un, deux ou trois bords courbes. Une autre partie de ce travail porte sur l'accélération de la convergence des calculs. En effet, la résolution du problème est itérative et peut, dans certains cas, converger très lentement. Une méthode d'accélération dite DSA (Diffusion Synthetic Acceleration) permet de diminuer le nombre d'itérations et le temps de calcul : un calcul de diffusion est ajouté à chaque itération. L'opérateur de diffusion est un préconditionneur de l'opérateur de transport. La DSA a été mise en oeuvre en utilisant une technique issue des méthodes de pénalisation intérieure. Une analyse de Fourier en 1D et 2D permet d'évaluer l'accélération dans le cas de milieux infinis périodiques et de vérifier la stabilité du schéma lorsque de fortes hétérogénéités existent.
3

Acceleration and higher order schemes of a characteristic solver for the solution of the neutron transport equation in 3D axial geometries / Elaboration d'une accélération et d'un schéma d'ordre supérieur pour la résolution de l'équation du transport des neutrons avec la méthode des caractéristiques pour des géométries 3D axiales

Sciannandrone, Daniele 14 October 2015 (has links)
Le sujet de ce travail de thèse est l’application de la méthode de caractéristiques longues (MOC) pour résoudre l’équation du transport des neutrons pour des géométries à trois dimensions extrudées. Les avantages du MOC sont sa précision et son adaptabilité, le point faible était la quantité de ressources de calcul requises. Ce problème est même plus important pour des géométries à trois dimensions ou le nombre d’inconnues du problème est de l’ordre de la centaine de millions pour des calculs d’assemblage.La première partie de la recherche a été dédiée au développement des techniques optimisées pour le traçage et la reconstruction à-la-volé des trajectoires. Ces méthodes profitent des régularités des géométries extrudées et ont permis une forte réduction de l’empreinte mémoire et une réduction des temps de calcul. La convergence du schéma itératif a été accélérée par un opérateur de transport dégradé (DPN) qui est utilisé pour initialiser les inconnues de l’algorithme itératif and pour la solution du problème synthétique au cours des itérations MOC. Les algorithmes pour la construction et la solution des opérateurs MOC et DPN ont été accélérés en utilisant des méthodes de parallélisation à mémoire partagée qui sont le plus adaptés pour des machines de bureau et pour des clusters de calcul. Une partie importante de cette recherche a été dédiée à l’implémentation des méthodes d’équilibrage la charge pour améliorer l’efficacité du parallélisme. La convergence des formules de quadrature pour des cas 3D extrudé a aussi été explorée. Certaines formules profitent de couts négligeables du traitement des directions azimutales et de la direction verticale pour accélérer l’algorithme. La validation de l’algorithme du MOC a été faite par des comparaisons avec une solution de référence calculée par un solveur Monte Carlo avec traitement continu de l’énergie. Pour cette comparaison on propose un couplage entre le MOC et la méthode des Sous-Groupes pour prendre en compte les effets des résonances des sections efficaces. Le calcul complet d’un assemblage de réacteur rapide avec interface fertile/fissile nécessite 2 heures d’exécution avec des erreurs de quelque pcm par rapport à la solution de référence.On propose aussi une approximation d’ordre supérieur du MOC basée sur une expansion axiale polynomiale du flux dans chaque maille. Cette méthode permet une réduction du nombre de mailles (et d’inconnues) tout en gardant la même précision.Toutes les méthodes développées dans ce travail de thèse ont été implémentées dans la version APOLLO3 du solveur de transport TDT. / The topic of our research is the application of the Method of Long Characteristics (MOC) to solve the Neutron Transport Equation in three-dimensional axial geometries. The strength of the MOC is in its precision and versatility. As a drawback, it requires a large amount of computational resources. This problem is even more severe in three-dimensional geometries, for which unknowns reach the order of tens of billions for assembly-level calculations.The first part of the research has dealt with the development of optimized tracking and reconstruction techniques which take advantage of the regularities of three-dimensional axial geometries. These methods have allowed a strong reduction of the memory requirements and a reduction of the execution time of the MOC calculation.The convergence of the iterative scheme has been accelerated with a lower-order transport operator (DPN) which is used for the initialization of the solution and for solving the synthetic problem during MOC iterations.The algorithms for the construction and solution of the MOC and DPN operators have been accelerated by using shared-memory parallel paradigms which are more suitable for standard desktop working stations. An important part of this research has been devoted to the implementation of scheduling techniques to improve the parallel efficiency.The convergence of the angular quadrature formula for three-dimensional cases is also studied. Some of these formulas take advantage of the reduced computational costs of the treatment of planar directions and the vertical direction to speed up the algorithm.The verification of the MOC solver has been done by comparing results with continuous-in-energy Monte Carlo calculations. For this purpose a coupling of the 3D MOC solver with the Subgroup method is proposed to take into account the effects of cross sections resonances. The full calculation of a FBR assembly requires about 2 hours of execution time with differences of few PCM with respect to the reference results.We also propose a higher order scheme of the MOC solver based on an axial polynomial expansion of the unknown within each mesh. This method allows the reduction of the meshes (and unknowns) by keeping the same precision.All the methods developed in this thesis have been implemented in the APOLLO3 version of the neutron transport solver TDT.

Page generated in 0.1192 seconds