1 |
The implications of actinide generation and destruction in accelerator driven sub-critical reactorsCoates, David John January 2012 (has links)
No description available.
|
2 |
Neutron induced light-ion production from iron and bismuth at 175 MeVBevilacqua, Riccardo January 2010 (has links)
<p>Light-ions (protons, deuterons, tritons, <sup>3</sup>He and α articles) production in the interaction of 175 MeV neutrons with iron and bismuth has been measured using the Medley setup at the The Svedberg Laboratory (TSL) in Uppsala. These measurements have been conducted in the frame of an international collaboration whose aim is to provide the scientific community with new nuclear data of interest for the development of Accelerator Driven Systems, in the range of 20 to 200 MeV. In this Licentiate Thesis I will present the background for the present experiment, the choice of the measured materials (iron and bismuth) and of the energy range. I will then give a short theoretical description of the involved nuclear reactions and of the model used to compare the experimental results. A description of the neutron facility at TSL and of Medley setup will follow. Monte Carlo simulations of the experimental setup have been performed and some results are here reported and discussed. I will present data reduction procedure and finally I will report preliminary double differential cross sections for production of hydrogen isotopes from iron and bismuth at several emission angles. Experimental data will be compared with model calculations with TALYS-1.0; these show better agreement for the production of protons, while seems to overestimate the experimental production of deuterons and tritons.</p>
|
3 |
Neutron induced light-ion production from iron and bismuth at 175 MeVBevilacqua, Riccardo January 2010 (has links)
Light-ions (protons, deuterons, tritons, 3He and α articles) production in the interaction of 175 MeV neutrons with iron and bismuth has been measured using the Medley setup at the The Svedberg Laboratory (TSL) in Uppsala. These measurements have been conducted in the frame of an international collaboration whose aim is to provide the scientific community with new nuclear data of interest for the development of Accelerator Driven Systems, in the range of 20 to 200 MeV. In this Licentiate Thesis I will present the background for the present experiment, the choice of the measured materials (iron and bismuth) and of the energy range. I will then give a short theoretical description of the involved nuclear reactions and of the model used to compare the experimental results. A description of the neutron facility at TSL and of Medley setup will follow. Monte Carlo simulations of the experimental setup have been performed and some results are here reported and discussed. I will present data reduction procedure and finally I will report preliminary double differential cross sections for production of hydrogen isotopes from iron and bismuth at several emission angles. Experimental data will be compared with model calculations with TALYS-1.0; these show better agreement for the production of protons, while seems to overestimate the experimental production of deuterons and tritons.
|
4 |
Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven SystemsCarlsson, Johan January 2003 (has links)
This thesis is devoted to the investigation of passivesafety and inherent features of subcritical nucleartransmutation systems - accelerator-driven systems. The generalobjective of this research has been to improve the safetyperformance and avoid elevated coolant temperatures inworst-case scenarios like unprotected loss-of-ow accidents,loss-of-heat-sink accidents, and a combination of both theseaccident initiators. The specific topics covered are emergencydecay heat removal by reactor vessel auxiliary cooling systems,beam shut-off by a melt-rupture disc, safety aspects fromlocating heat-exchangers in the riser of a pool-type reactorsystem, and reduction of pressure resistance in the primarycircuit by employing bypass routes. The initial part of the research was focused on reactorvessel auxiliary cooling systems. It was shown that an 80 MWthPb/Bi-cooled accelerator-driven system of 8 m height and 6 mdiameter vessel can be well cooled in the case of loss-of-owaccidents in which the accelerator proton beam is not switchedoff. After a loss-of-heat-sink accident the proton beam has tobe interrupted within 40 minutes in order to avoid fast creepof the vessel. If a melt-rupture disc is included in the wallof the beam pipe, which breaks at 150 K above the normal coreoutlet temperature, the grace period until the beam has to beshut off is increased to 6 hours. For the same vessel geometry,but an operating power of 250 MWth the structural materials canstill avoid fast creep in case the proton beam is shut offimmediately. If beam shut-off is delayed, additional coolingmethods are needed to increase the heat removal. Investigationswere made on the filling of the gap between the guard and thereactor vessel with liquid metal coolant and using water spraycooling on the guard vessel surface. The second part of the thesis presents examinationsregarding an accelerator-driven system also cooled with Pb/Bibut with heat-exchangers located in the risers of the reactorvessel. For a pool type design, this approach has advantages inthe case of heat-exchanger tube failures, particularly if wateris used as the secondary uid. This is because a leakage ofwater from the secondary circuit into the Pb/Bi-cooled primarycircuit leads to upward sweeping of steam bubbles, which wouldcollect in the gas plenum. In the case of heatexchangers in thedowncomer steam bubbles may be dragged into the ADS core andadd reactivity. Bypass routes are employed to increase the owspeed in loss-of-ow events for this design. It is shown thatthe 200 MWth accelerator-driven system with heat-exchangers inthe riser copes reasonably well with both a loss-of-ow accidentwith the beam on and an unprotected loss-of-heat-sink accident.For a total-loss-of-power (station blackout) and an immediatebeam-stop the core outlet temperature peaks at 680 K. After acombined loss-of-ow and loss-of-heat-sink accident the beamshould be shut off within 4 minutes to avoid exceeding the ASMElevel D of 977 K, and within 8 minutes to avoid fast creep.Assuming the same core inlet temperature, both the reactordesign with heat-exchanger in the risers and the downcomershave similar temperature evolutions after a total-loss-ofpoweraccident. A large accelerator-driven system of 800 MWth with a 17 mtall vessel may eventually become a standard size. For thishigher power ADS, the location of the heat-exchangers hasgreater impact on the natural convection capability. This isdue to that larger heatexchangers have more inuence on thedistance between the thermal centers during a lossof- owaccident. The design with heat-exchangers in the downcomers,the long-term vessel temperature peaks at 996 K during aloss-of-ow accident with the beam on. This does not pose athreat of creep rupture for the vessel. However, the locationof the heat-exchangers in the downcomers will probably requiresecondary coolant other than water, like for example oil (fortemperatures not higher than 673 K) or Pb/Bi coolant.
|
5 |
Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven SystemsCarlsson, Johan January 2003 (has links)
<p>This thesis is devoted to the investigation of passivesafety and inherent features of subcritical nucleartransmutation systems - accelerator-driven systems. The generalobjective of this research has been to improve the safetyperformance and avoid elevated coolant temperatures inworst-case scenarios like unprotected loss-of-ow accidents,loss-of-heat-sink accidents, and a combination of both theseaccident initiators. The specific topics covered are emergencydecay heat removal by reactor vessel auxiliary cooling systems,beam shut-off by a melt-rupture disc, safety aspects fromlocating heat-exchangers in the riser of a pool-type reactorsystem, and reduction of pressure resistance in the primarycircuit by employing bypass routes.</p><p>The initial part of the research was focused on reactorvessel auxiliary cooling systems. It was shown that an 80 MWthPb/Bi-cooled accelerator-driven system of 8 m height and 6 mdiameter vessel can be well cooled in the case of loss-of-owaccidents in which the accelerator proton beam is not switchedoff. After a loss-of-heat-sink accident the proton beam has tobe interrupted within 40 minutes in order to avoid fast creepof the vessel. If a melt-rupture disc is included in the wallof the beam pipe, which breaks at 150 K above the normal coreoutlet temperature, the grace period until the beam has to beshut off is increased to 6 hours. For the same vessel geometry,but an operating power of 250 MWth the structural materials canstill avoid fast creep in case the proton beam is shut offimmediately. If beam shut-off is delayed, additional coolingmethods are needed to increase the heat removal. Investigationswere made on the filling of the gap between the guard and thereactor vessel with liquid metal coolant and using water spraycooling on the guard vessel surface.</p><p>The second part of the thesis presents examinationsregarding an accelerator-driven system also cooled with Pb/Bibut with heat-exchangers located in the risers of the reactorvessel. For a pool type design, this approach has advantages inthe case of heat-exchanger tube failures, particularly if wateris used as the secondary uid. This is because a leakage ofwater from the secondary circuit into the Pb/Bi-cooled primarycircuit leads to upward sweeping of steam bubbles, which wouldcollect in the gas plenum. In the case of heatexchangers in thedowncomer steam bubbles may be dragged into the ADS core andadd reactivity. Bypass routes are employed to increase the owspeed in loss-of-ow events for this design. It is shown thatthe 200 MWth accelerator-driven system with heat-exchangers inthe riser copes reasonably well with both a loss-of-ow accidentwith the beam on and an unprotected loss-of-heat-sink accident.For a total-loss-of-power (station blackout) and an immediatebeam-stop the core outlet temperature peaks at 680 K. After acombined loss-of-ow and loss-of-heat-sink accident the beamshould be shut off within 4 minutes to avoid exceeding the ASMElevel D of 977 K, and within 8 minutes to avoid fast creep.Assuming the same core inlet temperature, both the reactordesign with heat-exchanger in the risers and the downcomershave similar temperature evolutions after a total-loss-ofpoweraccident.</p><p>A large accelerator-driven system of 800 MWth with a 17 mtall vessel may eventually become a standard size. For thishigher power ADS, the location of the heat-exchangers hasgreater impact on the natural convection capability. This isdue to that larger heatexchangers have more inuence on thedistance between the thermal centers during a lossof- owaccident. The design with heat-exchangers in the downcomers,the long-term vessel temperature peaks at 996 K during aloss-of-ow accident with the beam on. This does not pose athreat of creep rupture for the vessel. However, the locationof the heat-exchangers in the downcomers will probably requiresecondary coolant other than water, like for example oil (fortemperatures not higher than 673 K) or Pb/Bi coolant.</p>
|
6 |
On measurement and monitoring of reactivity in subcritical reactor systemsBerglöf, Carl January 2010 (has links)
Accelerator-driven systems have been proposed for incineration of transuranic elements from spent nuclear fuel. For safe operation of such facilities, a robust method for reactivity monitoring is required. Experience has shown that the performance of reactivity measurement methods in terms of accuracy and applicability is highly system dependent. Further investigations are needed to increase the knowledge data bank before applying the methods to an industrial facility and to achieve license to operate such a facility. In this thesis, two systems have been subject to investigation of various reactivity measurement methods. Conditions for successful utilization of the methods are presented, based on the experimental experience. In contrast to previous studies in this field, the reactivity has not only been determined, but also monitored based on the so called beam trip methodology which is applicable also to non-zero power systems. The results of this work constitute a part of the knowledge base for the definition of a validated online reactivity monitoring methodology for facilities currently being under development in Europe (XT-ADS and EFIT). / QC 20100621
|
7 |
Reliability Analysis and Controls for Accelerator Driven Systems Based On Project XBhattacharyya, Sampriti 06 September 2012 (has links)
No description available.
|
8 |
Development of a dynamic stochastic neutronic code for the analysis of conventional and hybrid nuclear reactors / Développement d’un code neutronique stochastique dynamique pour l’analyse de réacteurs nucléaires conventionnels et hybridesXenofontos, Thalia 19 January 2018 (has links)
La nécessité de simulations précises d’un réacteur nucléaire et spécialement dans des cas de cœurs et de configurations de combustible complexes, a imposé un usage accru de Codes Neutroniques Stochastiques (CNS). De plus, une demande a émergé pour des CNS à capacité inhérente d’estimation en continu de la variation de la composition isotopique du cœur ainsi qu’à couplage thermo-hydraulique optimisé. Des capacités supplémentaires sont exigées pour ces codes au vu de leur utilisation pour l’étude de nouveaux concepts de réacteur comme les Réacteurs Conduits par Accélérateur (RCA). Plus précisément, le réacteur hybride comprenant un réacteur nucléaire conventionnel et un accélérateur, nécessite l’analyse des deux composantes (réacteur – accélérateur) par un outil capable de couvrir le spectre énergétique neutronique extrêmement étendu qui caractérise ce système hybride.Ce travail présente les principales caractéristiques et capacités du nouveau CNS ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) développé en collaboration du NCSR Demokritos (Grèce) avec CNRS/IDRIS et UPMC (France) et couvrant autant que possible les exigences exposées ci-dessus. ANET est basé sur la version ouverte du code PHE GEANT3.21 et est destiné à effectuer des analyses de cœurs de réacteurs conventionnels de génération II et III ainsi que des RCA. ANET est construit avec la capacité inhérentea) d’effectuer des calculs d’évolution du combustibleb) de simuler le processus de spallation dans le cas des RCAtout en tenant compte de la thermo-hydraulique du système.La version actuelle d’ANET utilise les trois estimateurs standard Monte Carlo pour le calcul du facteur de multiplication neutronique effectif (keff), soit l’estimateur de collision, celui d’absorption et celui de longueur de trace. Pour ce qui est du calcul du débit de fluence neutronique et des taux de réaction, les estimateurs de collision et de longueur de trace sont implémentés dans ANET suivant la procédure standard Monte Carlo. Pour ce qui concerne les calculs d’évolution (par exemple la consommation du combustible), une approche purement stochastique est implémentée dans ANET. A noter que la procédure usuelle consiste à coupler le code neutronique stochastique avec un code déterministe qui calcule la consommation du combustible. Pour les besoins d’analyse des RCA, le module INCL/ABLA a été incorporé dans ANET de façon à ce que le processus de spallation soit simulé par le code. La capacité d’ANET de simuler des configurations classiques a été démontrée en utilisant des résultats de mesures et des simulations de vérification effectuées en utilisant d’autres codes bien établis, ainsi qu’il est montré par la suite.Des données provenant de plusieurs installations et des analyses de problèmes-type internationaux ont été utilisés pour vérifier et valider les capacités d’ANET.Pour conclure, les résultats obtenus lors des comparaisons avec des mesures ou avec des simulations effectuées en utilisant d’autres codes neutroniques stochastiques ou déterministes, montrent qu’ANET possède la capacité de calculer correctement d’importants paramètres de systèmes critiques ou sous-critiques. Par ailleurs, l’application préliminaire d’ANET à des problèmes dépendant du temps fournit des résultats encourageants. ANET produit des estimations de consommation de combustible raisonnables, compte tenu que des incertitudes dans ce domaine sont souvent de l’ordre de 20% ou plus. Finalement, les performances du code dans le cas de KUCA montrent qu’ANET peut analyser des RCA de façon satisfaisante. / The necessity for precise simulations of a nuclear reactor especially in case of complex core and fuel configurations has imposed the increasing use of Monte Carlo (MC) neutronics codes. Besides, a demand of additional stochastic codes’ inherent capabilities has emerged regarding mainly the simulation of the temporal variations in the core isotopic composition as well as the incorporation of the T-H feedback. In addition to the above, the design of innovative nuclear reactor concepts, such as the Accelerator Driven System (ADSs), imposed extra requirements of simulation capabilities. More specifically, the combination of an accelerator and a nuclear reactor in the ADS requires the simulation of both subsystems for an integrated system analysis. Therefore a need arises for more advanced simulation tools, able to cover the broad neutrons energy spectrum involved in these systems.This work presents the main features and capabilities of the new MC neutronics code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback), being developed in NCSR Demokritos (Greece) in cooperation with CNRS/IDRIS and UPMC (France) and intending to meet as effectively as possible the above described modelling requirements. ANET is based on the open-source version of the HEP code GEANT3.21 and is targeting to the creation of an enhanced computational tool in the field of reactor analysis, capable of simulating both GEN II/III reactors and ADSs. ANET is structured with inherent capability of (a) performing burnup calculations and (b) simulating the spallation process in the ADS analysis, while taking T-H feedback into account.The current ANET version utilizes the three standard Monte Carlo estimators for the neutron multiplication factor (keff) calculation, i.e. the collision estimator, the absorption estimator and the track-length estimator. Regarding the simulation of neutron fluence and reaction rates, the collision and the track-length estimators are implemented in ANET following the standard Monte Carlo procedure. For the burnup calculations ANET attempts to apply a pure Monte Carlo approach, adopting the typical procedure followed in stochastic codes. With respect to code improvements for the ADS analysis, so far ANET has incorporated the INCL/ABLA code so that the spallation process can be inherently simulated. The ANET reliability in typical computations was tested using observational data and parallel simulations by different codes as described in the following chapters.Various installations and international benchmarks were considered suitable for the verification and validation of all the previously mentioned features incorporated in the new code ANET. The obtained results are compared with experimental data from the nuclear infrastructures and with computations performed by well-established stochastic or deterministic neutronics codes and show satisfactory agreement with both measurements and independent computations, verifying thus ANET’s ability to successfully simulate important parameters of critical and subcritical systems. Also, the preliminary ANET application for dynamic analysis is encouraging since it indicates the code capability to inherently provide a reasonable prediction for the core inventory evolution taking into account the uncertainties of the order of 20% and even higher that are traditionally expected in core inventory evolution calculations. Lastly, the code performance in the KUCA case was found satisfactory demonstrating thus inherent capability of analyzing ADSs.
|
9 |
Experimentální studium pole neutronů v podkritickém urychlovačem řízeném jaderném reaktoru / Experimental Investigation of the Neutron Field in an Accelerator Driven Subcritical ReactorZeman, Miroslav January 2020 (has links)
This dissertation focuses on irradiations of a spallation set-up consisting of more than half a ton of natural uranium that were executed by a 660 MeV proton beam at the Joint Institute for Nuclear Reserch in Dubna. Two types of irradiations were arranged: with and without lead shielding. Both types were arranged with threshold activation detectors (Al-27, Mn-55, Co-59, and In-nat) located throughout the whole set-up both in horizontal and vertical positions and activated by secondary neutrons produced by spallation reaction. The threshold activation detectors were analysed by the method of gamma-ray spectroscopy. Radionuclides found in the threshold detectors were analysed and reaction rates were determined for each radionuclide. Ratios of the reaction rates were determined from irradiation of the set-up with and without lead shielding. Subsequently, the neutron spectra generated inside the spallation target at different positions were calculated using Co-59 detector. The experimental results were compared with Monte Carlo simulations performed using MCNPX 2.7.0.
|
10 |
Monitoring a simulace chování experimentálních terčů pro ADS, vývinu tepla a úniku neutronů / Monitoring and Simulation of ADS Experimental Target Behaviour, Heat Generation, and Neutron LeakageSvoboda, Josef January 2021 (has links)
Urychlovačem řízené podkritické systémy (ADS) se schopností transmutovat dlouhodobě žijící radionuklidy mohou vyřešit problematiku použitého jaderného paliva z aktuálních jaderných reaktorů. Stejně tak i potenciální problém s nedostatkem dnes používaného paliva, U-235, jelikož jsou schopny energeticky využít U-238 nebo i hojný izotop thoria Th-232. Tato disertační práce se v rámci základního ADS výzkumu zabývá spalačními reakcemi a produkcí tepla různých experimentálních terčů. Experimentální měření bylo provedeno ve Spojeném ústavu jaderných výzkumů v Dubně v Ruské federaci. V rámci doktorského studia bylo v průběhu let 2015-2019 provedeno 13 experimentů. Během výzkumu byly na urychlovači Fázotron ozařovány různé terče protony s energií 660 MeV. Nejdříve spalační terč QUINTA složený z 512 kg přírodního uranu, následně pak experimentální terče z olova a uhlíku nebo terč složený z olověných cihel. Byl proveden také speciální experiment zaměřený na detailní výzkum dvou protony ozařovaných uranových válečků, z nichž je složen spalační terč QUINTA. Výzkum byl především zaměřen na monitorování uvolňovaného tepla ze zpomalovaných protonů, spalační reakce a štěpení, způsobeného neutrony produkovanými spalační reakcí. Dále se na uvolňování tepla podílely piony a fotony. Teplota byla experimentálně měřena pomocí přesných termočlánků se speciální kalibrací. Rozdíly teplot byly monitorovány jak na povrchu, tak uvnitř terčů. Další výzkum byl zaměřený na monitorování unikajících neutronů z terče porovnávací metodou mezi dvěma detektory. První obsahoval malé množství štěpného materiálu s teplotním čidlem. Druhý byl složený z neštěpného materiálu (W nebo Ta), avšak s podobnými materiálovými vlastnostmi se stejnými rozměry. Unik neutronů (resp. neutronový tok mimo experimentální terč) byl detekován uvolněnou energií ze štěpné reakce. Tato práce se zabývá přesným měřením změny teploty pomocí termočlánků, s využitím elekroniky od National Instrument a softwaru LabView pro sběr dat. Pro práci s daty, analýzu a vizualizaci dat byl použit skriptovací jazyk Python 3.7. (s využitím několika knihoven). Přenos částic by simulován pomocí MCNPX 2.7.0., a konečně simulace přenosu tepla a určení povrchové teploty simulovaného modelu bylo provedeno v programu ANSYS Fluent (pro jednodušší výpočty ANSYS Transient Thermal).
|
Page generated in 0.0691 seconds