• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural features and functional residues important for the activity of an unusual membrane bound O-acyltransferase

Tran, Tam Nguyen Thu January 1900 (has links)
Doctor of Philosophy / Biochemistry and Molecular Biophysics / Timothy P. Durrett / The membrane bound O-acyltransferase (MBOAT) family contains multi-pass membrane proteins that add fatty acids to different compounds. Despite their importance in economic activity and human health, little is known about the localization of the active site and regions important for determining substrate specificity of MBOATs. Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) is the only known MBOAT enzyme that exhibits a high preference for acetyl-CoA, the shortest possible acyl-CoA. EaDAcT catalyzes the transfer of the acetate group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol. Our goal was to investigate the structural features and the amino acid residues that define substrate specificity of EaDAcT to provide insights into the mechanism by which MBOAT family controls substrate selection. By mapping the membrane topology of EaDAcT we obtained the first experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains with both the N- and C- termini oriented toward the endoplasmic reticulum lumen. The MBOAT signature region including the putative active site His-257 of the protein is embedded in the third transmembrane domain close to the interface between the membrane and the cytoplasm. In order to identify amino acid residues important for acetyltransferase activity, we isolated and characterized orthologs of EaDAcT from other acetyl-TAG producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved residues of DAcTs revealed that Ser-253, His-257 and Asp-258 are essential for enzyme activity of EaDAcT, suggesting their involvement in the enzyme catalysis. Alteration of residues unique to acetyltransferases did not alter the acyl donor specificity of EaDAcT, implying that multiple amino acids are important for substrate recognition. Together, this work identifies the structural features of EaDAcT and offers an initial view of the amino acids important for activity of the enzyme.
2

Enhancing the production of acetyl-triacylglycerols through metabolic engineering of the oilseed crop Camelina sativa

Alkotami, Linah January 1900 (has links)
Master of Science / Biochemistry and Molecular Biophysics Interdepartmental Program / Timothy P. Durrett / Many Euonymus species express an acetyltransferase enzyme in their seeds which catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol (DAG) producing unusual acetyl-1,2-diacyl-sn-glycerols (acetyl-TAG). The presence of the sn-3 acetate group gives acetyl-TAG with unique physical properties over regular triacylglycerol (TAG) found in vegetable oils. The useful characteristics of acetyl-TAG oil offer advantages for its use as emulsifiers, lubricants, and 'drop-in' biofuels. One enzyme, Euonymus alatus diacylglycerol acetyltransferase (EaDAcT), responsible for acetyl-TAG synthesis in nature was previously isolated from the seeds of Euonymus alatus (burning bush) and expressed in the oilseed crop Camelina sativa. Expression of EaDAcT successfully led to production of high levels of acetyl-TAG in camelina seeds. To further increase acetyl-TAG accumulation in transgenic camelina seeds, multiple strategies were examined in this study. Expression of a new acetyltransferase enzyme (EfDAcT) isolated from the seeds of Euonymus fortunei, which was previously shown to possess higher in vitro activity and in vivo acetyl-TAG levels compared to EaDAcT, increased acetyl-TAG accumulation by 20 mol%. Suppression of the endogenous competing enzyme DGAT1 further enhanced acetyl-TAG accumulation to 90 mol% in selected transgenic line. Studying the regulation of EfDAcT transcript, protein, and acetyl-TAG levels during seed development further provided new insights on the factors limiting acetyl-TAG accumulation.

Page generated in 0.0276 seconds