• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 75
  • 35
  • 10
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 315
  • 97
  • 50
  • 47
  • 42
  • 42
  • 36
  • 34
  • 30
  • 29
  • 26
  • 25
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Exploiting muscarinic acetylcholine receptors as an insecticidal target to enhance the toxicity of gamma-amino butyric acid channel blockers and the continued challenges with resistance

Xie, Na 19 May 2022 (has links)
Muscarinic acetylcholine receptors (mAChRs) are G-protein-coupled receptors that are underutilized for controlling insect pests despite their involvement in various physiological functions. To-date, there are no commercialized insecticides targeting insect mAChRs. In this dissertation, effective target-site synergism was demonstrated in susceptible Drosophila melanogaster where mAChR agonism by pilocarpine enhanced the toxicity of insecticides targeting gamma-aminobutyric acid (GABA)-gated chloride channels, indicating the potential of insect mAChRs as a target for developing novel insecticides/synergists to control resistant pests. A point mutation (A301S) in the GABA-gated chloride channel confers resistance to dieldrin (Rdl), lindane, and fipronil, which I have confirmed using different routes of exposure. However, the same synergistic effect was not achieved in the resistant strain with the presence of this target-site mutation. This difference between two strains is perplexing because there is a change in the efficacy of several compound classes that do not directly act upon GABA-gated chloride channels. Specifically, a point mutation appears to influence how the insect central nervous system (CNS) responds to muscarinic compounds, type I pyrethroids, and acetylcholinesterase (AChE) inhibitors. In the case of acetylcholinesterase, the resistant insect increases the expression of Ace gene encoding this enzyme. Fully understanding how the CNS responds to receptor modifications is not well understood and could have a significant impact to pest management strategies. / Doctor of Philosophy / Insects significantly influence the food production, health, and the economy of the human world. Control of insect pest outbreaks relies on the proper use of insecticides. However, extensive application of insecticides has resulted in pests being able to adapt to these compounds, through insecticide resistance. Ultimately, this will affect currently used pest management strategies. To help alleviate this urgent problem, my dissertation provided an alternative strategy to control pests, which is to use a mixture of two molecules that influence different targets in the insect nervous system that could reduce the use of toxic or deleterious compounds that are the active ingredients. It is important to not solely rely on current insecticides on the market and find new insecticides that work differently. I used the fruit fly to help me understand how insecticide mixtures would work, but also understand how the complex nature of insect adaptations at the level of the nervous system continues to threaten pest management. Based on studies that were performed here, we now have a better understanding on how to investigate the failure of insecticides in the field, which will ultimately help us make new molecules.
102

Toxicological Analysis of Tacrines and Verapamil on the Yellow Fever Mosquito, Aedes aegypti

Pham, Ngoc Nhu 01 July 2016 (has links)
Mosquitoes affect human health worldwide as a result of their ability to vector multiple diseases. Mosquitocide resistance is a serious public health challenge that warrants the development of improved chemical control strategies for mosquitoes. Previous studies demonstrate the mosquito blood-brain barrier (BBB) to interfere with the target-site delivery and action of anticholinesterase chemistries. The ATP-binding cassette (ABC) transporters are efflux proteins that assist in maintaining the BBB interface and serve as a first line of defense to mosquitocide exposures. To date, there are three subfamilies (ABC -B, -C, -G) of ABC transporters; however, knowledge of these chemistries interacting with mosquito ABC transporter(s) is limited. Here, I report that tacrine and bis(7)-tacrine are relative non-toxic anticholinesterases at solubility limits; however, the addition of verapamil enhances toxicity of both tacrine and bis(7)-tacrine to mosquitoes. Verapamil significantly increases the mortality of mosquitoes exposed to tacrine and bis(7)-tacrine compared to the tacrine- and bis(7)- tacrine-only treatments. Tacrine and bis(7)-tacrine reduce acetylcholinesterase activity in mosquito head preparations compared to the untreated mosquitoes; however, the addition of verapamil significantly increases the anticholinesterase activity of tacrine and bis(7)-tacrine compared to the tacrine-and bis(7)-tacrine-only treatments. Tacrine and bis(7)-tacrine increase ATPase activity in Aedes aegypti at lower concentrations compared to that of verapamil (Fig. 3). The differential increase in ATPase activity suggests that tacrine and bis(7)-tacrine are more suitable substrates for ABC transporter(s) compared to verapamil and, thus, provides putative evidence that ABC transporter(s) is a pharmacological obstacle to the delivery of these anticholinesterases to their intended target site. / Master of Science in Life Sciences
103

Trifluoromethyl ketones: Potential insecticides towards Anopheles gambiae

Camerino, Eugene 11 January 2013 (has links)
Malaria continues to cause significant mortality in sub-Saharan Africa and elsewhere, and existing vector control measures are being threatened by growing resistance to pyrethroid insecticides.  With the goal of developing new human-safe, resistance-breaking insecticides we have explored several classes of acetylcholinesterase inhibitors.  In vitro assay studies have shown that trifluoromethyl ketones (TFK's) are potent inhibitors of An. gambiae AChE (AgAChE), that inhibit the enzyme by making a covalent adduct with the catalytic serine of the enzyme.  However research in the Carlier group has shown that trifluoromethyl ketones bearing benzene and pyrazole cores have shown very little toxicity to An. gambiae, perhaps due to hydration and rapid clearance. Focus was directed towards synthesis of oximes, oxime ethers, and hydrazones as potential prodrugs to prevent immediate hydration and reach the central nervous system.  The synthesis of various oximes, oxime ethers, and hydrazones has been shown to give cimpounds toxic to Anopheles gambiae within 3- to 4-fold of the toxicity of propoxur. However, thus far we have not been able to link the toxicity of these compounds to a cholinergic mechanism.  Pre-incubation studies suggest that significant hydrolysis of these compounds to TFKs does not occur or 22 h at pH 7.7 or 5.5.   Future work will be directed towards TFKs that have better pharmacokinetic properties.  Work will also be directed at synthesis of oxime and hydrazone TFK isosteres to determine the mechanism of action of these compounds. / Master of Science
104

Methods for controlling two European Honey bee (Apis mellifera L.) pests:  Varroa mites (Varroa destructor, Anderson and Trueman) And Small hive beetles (Aethina tumida)

Roth, Morgan Alicia 11 June 2019 (has links)
Throughout the last five decades, European Honey bee (Apis mellifera) colonies have been heavily damaged by invading Varroa mites (Varroa destructor), and, more recently, small hive beetles (Aethina tumida). These pests infest A. mellifera colonies throughout Virginia, with V. destructor feeding upon the lipids of their hosts and spreading viruses, and A. tumida feeding extensively on hive products and brood. Because V. destructor has historically demonstrated acaricide resistance, this study examined V. destructor resistance to three common acaricides (amitraz, coumaphos, and tau-fluvalinate) throughout the three geographic regions of Virginia using glass vial contact bioassays; the results showed no resistance in the sites tested. To gain better insights into A. tumida pharmacology, several known acetylcholinesterase (AChE) inhibitors and three novel insecticides (previously shown to have low mammalian toxicity) were tested against an A. tumida laboratory colony through in vivo and in vitro bioassays. The results of these bioassays indicated that coumaphos was most selective and topically effective against A. tumida, while only one experimental compound was selective against A. tumida, with 29-fold less potency than coumaphos. These results can help apiculturists in making informed pest management choices and can lead to future studies further examining V. destructor resistance and optimizing A. tumida insecticide treatments. / Master of Science in Life Sciences / Beekeepers throughout the world have experienced great economic loss and observed a troubling decline in European Honey bee colonies over the past fifty years due to Varroa mite infestations. Varroa mites feed on the fat body of bees, depriving them of nutrients and infecting them with various diseases. Attempts made to control Varroa mites with synthetic chemicals throughout the years have led to acaricide resistance. To look at resistance in Virginia’s mite populations, resistance testing was performed on Varroa mite populations throughout the three geographic regions of Virginia, and these studies showed that there was not resistance in these populations. Another significant hive pest that is increasingly prevalent in the United States is the small hive beetle (SHB), which feeds on bee brood and hive products. SHB management tactics are still being explored, and this project tested various known insecticide treatments against small hive beetles and bees, as well as three insecticide treatments that were designed for mosquito control and have low toxicity to mammals. The results of this study showed that, of the insecticides tested, coumaphos was the most selective against SHB. This information can help beekeepers in Virginia make informed choices when deciding how to treat Varroa mite infestations, and can add to the knowledge base of those fighting small hive beetle infestations.
105

Calcium-activated butyrylcholinesterase in human skin protects acetylcholinesterase against suicide inhibition by neurotoxic organophosphates.

Schallreuter, Karin U., Gibbons, Nick C., Elwary, Souna M.A., Parkin, Susan M., Wood, John M. January 2007 (has links)
No / The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 × 10-3 M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. 45Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H2O2-mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m2 surface area with its calcium gradient in the 10¿3 M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue
106

The disposition and metabolism of a novel brain-penetrating oxime reactivator of inhibited acetylcholinesterase

Burke, Thomas Christopher 13 August 2024 (has links) (PDF)
Organophosphates (OPs) were initially designed as insecticides and later engineered as dangerous nerve agents that threaten our livelihood and safety. One of the treatments for OP exposure is the administration of an oxime to reactivate inhibited acetylcholinesterase (AChE). The currently approved oxime therapy in the US, pralidoxime (2-PAM), is unable to reactivate inhibited AChE in the brain due to its low ability to cross the blood-brain barrier (BBB) which has led our laboratory to develop novel substituted phenoxyalkyl pyridinium oximes (US Patent 9,227,937) that penetrate the BBB more effectively. Our lead oxime candidate, Oxime 20, has proven efficacious in reactivating inhibited AChE both in vitro and in vivo and is in the preliminary steps of drug development which require metabolism studies such as pharmacokinetics (PK), protein-binding (PB) and metabolite identification. PK parameters were explored for Oxime 20 and found to have an average half-life of 11.6 hours and an average Tmax of 0.083 hours in rats and an average half-life of 15 hours and an average Tmax of 0.11 hours in minipigs. As compared to 2-PAM, our oxime has displayed a 2-4 times longer half-life and a 3 times faster Tmax which allows it to be distributed at a faster rate and stay in circulation for longer. Furthermore, Oxime 20 was found to be >84% plasma protein-bound as compared to 2-PAM which was <8% protein-bound. These PB characteristics align with the PK parameters as highly protein-bound drugs tend to have a longer half-life than low protein-bound drugs. Finally, our oxime displayed a potentially safe metabolism in the presence of microsomes with the generation of two more polar metabolites as compared to Oxime 20, a hydroxyl metabolite and a carboxylic acid metabolite. With these findings, Oxime 20 continues to show promise and excellent characteristics for drug development and potentially will be the next suitable and effective option for treatment of OP exposure either by itself or in combination with 2-PAM.
107

Molekular-Dynamik-Simulationen zum Katalysemechanismus der Acetylcholinesterase / Molecular dynamics simulations towards the catalytic mechanism of acetylcholinesterase

Müller, Matthias 30 January 2002 (has links)
No description available.
108

Immobilisation of electric eel acetylcholinesterase on nanofibres electrospun from a nylon and chitosan blend

Mafuma, Tendai Simbarashe January 2013 (has links)
Organophosphates and carbamates are potent inhibitors of the neurotransmitter acetylcholinesterase. This inhibition results in the blocking of nerve signal transference into the post synaptic neuron leading to loss of muscle action and death. Because of the universal mechanisms of signal transduction in animals, these inhibitors have been widely used as agricultural pesticides as well as chemical warfare agents (nerve agents). Health issues associated with pesticide usage result from the fact that both the pesticides and their breakdown products often end up in water and food sources as well as in the soil. As a result, there has been an increase in the number of studies aimed at the detection of these pesticides in the environment. One popular research area is enzyme based biosensor construction. Some important criteria for consideration during the construction of biosensors are the importance of a suitable solid support as well as the enzyme immobilisation method. Recently, there has been increased interest in using nano-scale material e.g. using nanoparticles as enzyme support material. This is largely due to their advantages such as large surface area to volume ratio as well as reduced mass transfer resistance. Electrospinning is a straight forward and cost effective method for producing nanofibres from any soluble polymer(s). The applications of electrospun nanofibres have been reported in clinical studies, biofuel production as well as bioremediation. In this study two polymers were selected: nylon for its mechanical stability and chitosan for its biocompatibility and hydrophilicity, for the fabrication of electrospun nanofibres which would function as immobilisation support material for acetylcholinesterase. The first objective of this study was to electrospin nanofibres from a nylon-6 and chitosan blend solution. A binary solvent system consisting of formic acid and acetic acid (50:50) successfully dissolved and blended the polymers which were subsequently electrospun. Scanning electron microscopy characterisation of the nanofibres showed that (i) a nylon-6: chitosan ratio of 16%: 3% resulted in the formation of bead free nanofibres and (ii) the fibres were collected in non-woven mats characterised by different size nanofibres with average diameters of 250 nm for the main fibres and 40 nm for the smaller nanofibres. Fourier transform infra-red (FT-IR) analysis of the nanofibres indicated that a new product had been formed during the blending of the two polymers. The second aim of the study was to carry out a facile immobilisation of electric eel acetylcholinesterase via glutaraldehyde (GA) cross-linking. Glutaraldehyde solution 5% (v/v) resulted in the immobilisation of 0.334 mg/cm² of acetylcholinesterase onto the nanofibres. The immobilisation procedure was optimised with reference to acetylcholinestease and crosslinker concentrations, incubation time and the cross-linking method. A comparative investigation into the optimum pH and temperature conditions, pH and thermal stabilities, substrate and inhibition kinetics was then carried out on free and immobilised acetylcholinesterase. The final objective of this study was to determine the storage stabilities of the immobilised and free enzymes as well as the reusability characteristics of the immobilised acetylcholinesterase. Several conclusions were drawn from this study. Acetylcholinesterase was successfully immobilised onto the surface of nylon-6:chitosan nanofibres with retention of its activity. There was a shift in the pH optimum of the immobilised acetylcholineseterase by 0.5 units towards a neutral pH. Although both free and immobilised acetylcholinesterase exhibited the same optimum temperature, immobilised acetylcholinesterase showed enhanced thermal stability. In terms of pH stability, immobilised acetylcholinesterase showed greater stability at acidic pH whilst free acetylcholinesterase was more stable under alkaline pH conditions. Relative to free acetylcholinesterase, the immobilised enzyme showed considerable storage stability retaining ~50% of its activity when stored for 49 days at 4°C. Immobilised acetylcholinesterase also retained > 20% of its initial activity after 9 consecutive reuse cycles. When exposed to fixed concentrations of carbofuran or demeton-S-methyl sulfone, immobilised acetylcholinesterase showed similar inhibition characteristics to that of the free enzyme. The decrease in enzyme activity observed after immobilisation to the nanofibres may have been due to several reasons which include some enzyme molecules being immobilised in structural conformations which reduced substrate access to the catalytic site, participation of the catalytic residues in immobilisation and enzyme denaturation due to the reaction conditions used for acetylcholinesterase immobilisation. Similar observations have been widely reported in literature and this is one of the major drawbacks of enzyme immobilisation. In conclusion, nylon-6:chitosan electrospun nanofibres were shown to be suitable supports for facile acetylcholinesterase immobilisation and the immobilised enzyme has potential for use in pesticide detection. Future recommendations for this study include a comparative study of the GA cross-linking method for AChE immobilisation which will lead to more intensely bound enzyme molecules to prevent non-specific binding. An investigation into the effect of inhibitors on stored immobilised AChE, as well as reactivation and reuse studies, may also be useful for determining the cost-effectiveness of reusing immobilised AChE for pesticide detection in environmental water samples. Several models have been designed for the determination of the kinetic parameters for immobilised enzymes. These take into account the mass transfer resistance as well as the overall charge of the immobilisation matrix. The use of these models to analyse experimental data will give a clear understanding of the effects of immobilisation on enzyme activity
109

Neurotropní a antioxidační aktivita vybraných druhů jednoděložných alkaloidních rostlin. VIII. / Neurotropic and antioxidative activity of some selected species of monocotyledonous alkaloidal plants in vitro. VIII.

Breiterová, Kateřina January 2015 (has links)
Author: Kateřina Breiterová Title: Neurotropic and antioxidative activity of some selected species of monocotyledonous alkaloidal plants in vitro. VIII. Diploma thesis Charles Univerzity in Prague, Faculty of Pharmacy in Hradec Králové, Department of Pharmaceutical Botany and Ecology 2015, 101 p. More than 50 % cases of dementia are nowadays caused byAlzheimer's disease (AD). AD is a progressive neurodegenerative disease and it causes gradual memory loss, disorientation and behavioral disorders which affect patient's social and occupational life. AD is characteristic by loss of neurons in some regions of brain - for example hippocampus and cortex. Ethiopathogenesis of this disease is not completely known - that is why the treatment is still just symptomatic. Formation of β-amyloid deposits in brain tissue plays an important role - it is a protein which creates extracellular plagues around neurites and causes their degeneration and death. Intracellular tangles are made up of the changed τ-protein. These tangles also cause death of the neuronal cell. The degeneration of neurons is supported by reactive oxygen radicals too. The another problem is a glutamatergic system disorder. This set of excitatory amino acids is important for correct long-term memory formation. Patients with AD suffer from...
110

Sledování kinetiky inhibitorů acetylcholinesterasy in vitro / Evaluation of the kinetics of acetylcholinesterase inhibitors in vitro

Janská, Kateřina January 2014 (has links)
Kateřina Janská Evaluation of the kinetics of acetylcholinesterase inhibitors in vitro Diploma thesis Charles University in Prag, Faculty of Pharmacy in Hradec Králové Pharmacy Department of Biological and Medical Sciences Supervisor: Doc. MUDr. Josef Herink, DrSc. Consultant: PharmDr. Vendula Šepsová The aim of the thesis was to determine the type of an inhibition of newly synthesized AChEI and to find out if AChEI structure changes influence the type of an inhibition. Altogether 12 substances (7 tacrine hybrides and 5 7-methoxy- donepezil hybrids) were investigated. The inhibition potential of the tested substances was studied in vitro on the human recombinant AChE. Spectrophotometric Ellman method was utilized as the measurement tool. The noncompetitive type of an inhibition for substances EN 1-5, PC-25 and PC-33, mixed type of an inhibition for substances PC-48 and PC-49, uncompetitive type of an inhibition for substances EN-6, EN-7 and competitive type of an inhibition for the substance PC-37 was determined. The greatest inhibition potential according to Ki values were found for substances EN-7 and PC-37. Substances PC-37 and PC-48 were determined as substances with the biggest affinity to the AChE. The type of an inhibition has been influenced by a substituent position in PC substances and by...

Page generated in 0.0708 seconds