• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field evaluation of nitrogen fixation with the acetylene reduction technique

Mague, Timothy Hall, January 1970 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1970. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
2

Nitrogen fixation in the lichen Stereocaulon paschale

Huss-Danell, Kerstin January 1979 (has links)
The thesis is a summary and discussion of six papers. The purpose of the investigation was to study the influence of (i) environmental factors and (ii) the physiological condition of the thallus on nitrogen fixation in the lichen Stereocaulon paschale (L.) Fr. The nitrogen input to the site, a sparsely stocked pine forest in northern Sweden, was also studied. Nitrogen fixation (nitrogenase activity) was measured as acetylene reduction both in the field and in the laboratory. Usually intact lichen thalli were used, but also excised cephalodia were studied. All nitrogenase activity was located in the external cephalodia containing the blue-green alga Stigonema sp. There was always a reduction in nitrogenase activity when the cephalodia were quantitatively excised from the thallus. Moisture was found to be the most important environmental factor in the field during the snow free part of the year. At the site, with 14 % of the ground covered by S. paschale3 the yearly nitrogen fixation was estimated to c. 0.1 g nitrogen per m^. The lichen thalli could withstand several months in a very dry condition and at a low temperature without significant decrease in nitrogenase activity. A higher capacity for nitrogenase activity was found in lichen thalli collected from bare ground than in thalli collected under the snow. The light conditions before as well as during the nitrogenase activity measurements affected the nitrogenase activity. Thalli incubated with acetylene in the dark had only c. two thirds of their activities in the light. Lichen thalli pretreated in the light showed increased nitrogenase activities, probably due to raised content of carbohydrates available for nitrogenase activity. The necessary energy for nitrogenase activity is supplied by either oxidative phosphorylation or photophosphorylation. / digitalisering@umu
3

Nitrogen Fixation in Lakes: Response to Micronutrients and Exploration of a Novel Method of Measurement

Schmidt, Bethany Marie, Ms. 23 April 2018 (has links)
No description available.
4

Cianobactérias em ecossistemas de manguezais: isolamento, morfologia e diversidade genética / Cyanobacteria in mangrove ecosystems: isolation, morphology and genetic diversity

Genuario, Diego Bonaldo 23 June 2010 (has links)
Manguezais são ecossistemas de transição entre ambientes terrestres e marinhos encontrados em regiões tropicais e subtropicais. A ampla faixa de variações de salinidade e teor oxigênio, típica desses ambientes, está entre os principais fatores condicionantes da colonização e desenvolvimento da biota. Apesar disso, são ambientes com elevada produção primária. Entre os nutrientes, o nitrogênio é um dos principais fatores limitantes que afetam o desenvolvimento da vegetação do manguezal e somente baixa disponibilidade de formas reduzidas está presente. Portanto, há a necessidade de determinar os micro-organismos fixadores de nitrogênio que colonizam os ecossistemas de manguezais. Dentre esses, existem as cianobactérias, um grupo bem conhecido de micro-organismos fotossintéticos oxigênicos e fixadores de nitrogênio. Neste estudo, 50 linhagens de cianobactérias foram isoladas de amostras ambientais de solos, água e material perifítico, coletadas nos ecossistemas de manguezais da Ilha do Cardoso e Bertioga, São Paulo. Essas linhagens foram isoladas usando meios específicos de crescimento e análises morfológicas identificaram representantes das ordens Chroococcales (35 linhagens, 70%), Oscillatoriales (9 linhagens, 18%) e Nostocales (6 linhagens, 12%). Dezesseis linhagens distribuídas entre as ordens Chroococcales e Nostocales foram selecionadas para os estudos de filogenia usando o gene rpoC1. A maioria das sequências de rpoC1 geradas pela amplificação por PCR usando o conjunto específico de primer rpoC1-1/rpoC1-T mostraram baixas similaridades (menor que 90%) com seqüências disponíveis no GenBank, indicando que estas linhagens de cianobactérias são únicas. As exceções foram somente duas linhagens (Synechococcus sp. CENA177 and Cyanothece sp. CENA169) que apresentaram altas similaridades com sequências de cianobactérias isoladas de ambientes de água doce do Brasil. A análise filogenética Neighbor-Joining mostrou que várias das novas linhagens cianobactérias dos manguezais se agruparam, sem relação com a descrição taxonômica baseada na caracterização morfotípica. Uma busca pelo gene funcional nifH, o qual codifica para a redutase da nitrogenase, em 27 isolados dos manguezais, revelou a sua presença em 21 linhagens (77%) dispersas entre as ordens Chroococcales, Oscillatoriales e Nostocales. Os 21 fragmentos do gene nifH amplificados foram clonados e seqüenciados e todas as sequências também mostram baixas similaridades (menor que 95%) com seqüências de cianobactérias disponíveis no GenBank. A análise filogenética do gene nifH posicionou as novas linhagens de cianobactérias dos manguezais em vários agrupamentos distribuídos ao longo da árvore, e como também observado para o gene rpoC1, sem correlação com a descrição taxonômica baseada na caracterização morfotípica. Atividade da nitrogenase, avaliada pela técnica de redução de acetileno, foi encontrada em cinco linhagens pertencentes à ordem Nostocales e em uma linhagem pertencente à ordem Chroococcales. A estimativa da fixação biológica de nitrogênio por essas linhagens variaram de 327,01 a 1.954,15 pmol N2.g-1 de biomassa seca.dia-1. / Mangroves are transitional ecosystems between terrestrial and marine environments found in tropical and subtropical regions. The broad range of variations of salinity and oxygen content, typical of these environments, is among the main constraint factors for the establishment and development of biota. Nevertheless, mangroves have high primary production. Among the nutrients, nitrogen is one of the most important limiting factors affecting the development of mangrove vegetation and only low availability of reduced forms is present. Therefore, there is a need to determine the nitrogen fixing microorganisms that colonize mangrove ecosystems. Among those, there are the cyanobacteria, a well known group of oxygenic photosynthetic and nitrogen fixing microorganisms. In this study, 50 cyanobacterial strains were isolated from environmental samples of soil, water and periphytic material collected in the Cardoso Island and Bertioga mangrove ecosystems, São Paulo. These strains were isolated using specific growth media and morphological analyses identified representatives of the orders Chroococcales (35 strains, 70%), Oscillatoriales (9 strains, 18%) and Nostocales (6 strains, 12%). Sixteen strains belong to the orders Chroococcales and Nostocales were selected for phylogeny studies using the gene rpoC1. The majority of rpoC1 sequences generated by PCR amplification using the specific set primer rpoC1-1/rpoC1-T showed low similarities (below 90%) with sequences available in the GenBank, indicating that these cyanobacterial strains are unique. The exceptions were only two strains (Synechococcus sp. CENA177 and Cyanothece sp. CENA169) that had high similarities with cyanobacterial sequences isolated from Brazilian freshwater environments. The Neighbor-Joining phylogenetic analysis showed that several of the new mangrove cyanobacterial strains clustered together, with no relationship with the taxonomical description based on morphotypic characterization. A search for the functional nifH gene, which coding for nitrogenase reductase, on 27 mangrove isolates revealed its presence in 21 strains (77%) dispersed among the orders Chroococcales, Oscillatoriales and Nostocales. The 21 amplified fragments of nifH were cloned and sequenced, and all the sequences also showed low similarities (below 95%) with cyanobacterial sequences available in the GenBank. The phylogenetic analysis of nifH gene positioned the new mangrove cyanobacterial strains in several clusters distributed along the tree, and as also observed for rpoC1 gene, with no correlation with the taxonomical description based on morphotypic characterization. Nitrogenase activity, measured by the acetylene reduction technique, was found in five strains belonging to the order Nostocales and one strain belonging to the order Chroococcales. The estimation of biological nitrogen fixation by these strains ranged from 327.01 to 1954.15 pmol N2.g-1 dry biomass.day-1.
5

Cianobactérias em ecossistemas de manguezais: isolamento, morfologia e diversidade genética / Cyanobacteria in mangrove ecosystems: isolation, morphology and genetic diversity

Diego Bonaldo Genuario 23 June 2010 (has links)
Manguezais são ecossistemas de transição entre ambientes terrestres e marinhos encontrados em regiões tropicais e subtropicais. A ampla faixa de variações de salinidade e teor oxigênio, típica desses ambientes, está entre os principais fatores condicionantes da colonização e desenvolvimento da biota. Apesar disso, são ambientes com elevada produção primária. Entre os nutrientes, o nitrogênio é um dos principais fatores limitantes que afetam o desenvolvimento da vegetação do manguezal e somente baixa disponibilidade de formas reduzidas está presente. Portanto, há a necessidade de determinar os micro-organismos fixadores de nitrogênio que colonizam os ecossistemas de manguezais. Dentre esses, existem as cianobactérias, um grupo bem conhecido de micro-organismos fotossintéticos oxigênicos e fixadores de nitrogênio. Neste estudo, 50 linhagens de cianobactérias foram isoladas de amostras ambientais de solos, água e material perifítico, coletadas nos ecossistemas de manguezais da Ilha do Cardoso e Bertioga, São Paulo. Essas linhagens foram isoladas usando meios específicos de crescimento e análises morfológicas identificaram representantes das ordens Chroococcales (35 linhagens, 70%), Oscillatoriales (9 linhagens, 18%) e Nostocales (6 linhagens, 12%). Dezesseis linhagens distribuídas entre as ordens Chroococcales e Nostocales foram selecionadas para os estudos de filogenia usando o gene rpoC1. A maioria das sequências de rpoC1 geradas pela amplificação por PCR usando o conjunto específico de primer rpoC1-1/rpoC1-T mostraram baixas similaridades (menor que 90%) com seqüências disponíveis no GenBank, indicando que estas linhagens de cianobactérias são únicas. As exceções foram somente duas linhagens (Synechococcus sp. CENA177 and Cyanothece sp. CENA169) que apresentaram altas similaridades com sequências de cianobactérias isoladas de ambientes de água doce do Brasil. A análise filogenética Neighbor-Joining mostrou que várias das novas linhagens cianobactérias dos manguezais se agruparam, sem relação com a descrição taxonômica baseada na caracterização morfotípica. Uma busca pelo gene funcional nifH, o qual codifica para a redutase da nitrogenase, em 27 isolados dos manguezais, revelou a sua presença em 21 linhagens (77%) dispersas entre as ordens Chroococcales, Oscillatoriales e Nostocales. Os 21 fragmentos do gene nifH amplificados foram clonados e seqüenciados e todas as sequências também mostram baixas similaridades (menor que 95%) com seqüências de cianobactérias disponíveis no GenBank. A análise filogenética do gene nifH posicionou as novas linhagens de cianobactérias dos manguezais em vários agrupamentos distribuídos ao longo da árvore, e como também observado para o gene rpoC1, sem correlação com a descrição taxonômica baseada na caracterização morfotípica. Atividade da nitrogenase, avaliada pela técnica de redução de acetileno, foi encontrada em cinco linhagens pertencentes à ordem Nostocales e em uma linhagem pertencente à ordem Chroococcales. A estimativa da fixação biológica de nitrogênio por essas linhagens variaram de 327,01 a 1.954,15 pmol N2.g-1 de biomassa seca.dia-1. / Mangroves are transitional ecosystems between terrestrial and marine environments found in tropical and subtropical regions. The broad range of variations of salinity and oxygen content, typical of these environments, is among the main constraint factors for the establishment and development of biota. Nevertheless, mangroves have high primary production. Among the nutrients, nitrogen is one of the most important limiting factors affecting the development of mangrove vegetation and only low availability of reduced forms is present. Therefore, there is a need to determine the nitrogen fixing microorganisms that colonize mangrove ecosystems. Among those, there are the cyanobacteria, a well known group of oxygenic photosynthetic and nitrogen fixing microorganisms. In this study, 50 cyanobacterial strains were isolated from environmental samples of soil, water and periphytic material collected in the Cardoso Island and Bertioga mangrove ecosystems, São Paulo. These strains were isolated using specific growth media and morphological analyses identified representatives of the orders Chroococcales (35 strains, 70%), Oscillatoriales (9 strains, 18%) and Nostocales (6 strains, 12%). Sixteen strains belong to the orders Chroococcales and Nostocales were selected for phylogeny studies using the gene rpoC1. The majority of rpoC1 sequences generated by PCR amplification using the specific set primer rpoC1-1/rpoC1-T showed low similarities (below 90%) with sequences available in the GenBank, indicating that these cyanobacterial strains are unique. The exceptions were only two strains (Synechococcus sp. CENA177 and Cyanothece sp. CENA169) that had high similarities with cyanobacterial sequences isolated from Brazilian freshwater environments. The Neighbor-Joining phylogenetic analysis showed that several of the new mangrove cyanobacterial strains clustered together, with no relationship with the taxonomical description based on morphotypic characterization. A search for the functional nifH gene, which coding for nitrogenase reductase, on 27 mangrove isolates revealed its presence in 21 strains (77%) dispersed among the orders Chroococcales, Oscillatoriales and Nostocales. The 21 amplified fragments of nifH were cloned and sequenced, and all the sequences also showed low similarities (below 95%) with cyanobacterial sequences available in the GenBank. The phylogenetic analysis of nifH gene positioned the new mangrove cyanobacterial strains in several clusters distributed along the tree, and as also observed for rpoC1 gene, with no correlation with the taxonomical description based on morphotypic characterization. Nitrogenase activity, measured by the acetylene reduction technique, was found in five strains belonging to the order Nostocales and one strain belonging to the order Chroococcales. The estimation of biological nitrogen fixation by these strains ranged from 327.01 to 1954.15 pmol N2.g-1 dry biomass.day-1.
6

Adaptation and acclimation of red alder (Alnus rubra) in two common gardens of contrasting climate

Porter, Brendan 22 December 2011 (has links)
Red alder (Alnus rubra Bong.) is the only tree in British Columbia and the Northwest US to engage in actinorhizal symbiosis to fix atmospheric nitrogen. This study was conducted to explore the plasticity in growth and physiology among 58 17-year-old red alder families in response to variation in climate in two common garden plots, one at Bowser, BC and one at Terrace, BC. Physiological assessments included height and diameter growth, bud flush, water use efficiency as measured by δ13C, cold hardiness as measured by controlled freezing and electrolyte leakage, autumn leaf senescence, and instantaneous and seasonally integrated rates of nitrogen fixation as measured by acetylene reduction and natural abundance δ15N isotope analysis, respectively. Significant differences were identified among families for growth (height and diameter), bud burst stage, leaf senescence, cold hardiness, and bud nitrogen content. No significant differences among families were identified for water use efficiency as measured by δ13C, or for rates of nitrogen fixation as measured by either acetylene reduction or natural abundance δ15N. This study identified possible adaptive differences among red alder genotypes, especially in traits such as bud flush timing, cold hardiness, or nitrogen fixation and their respective contributions to growth. These differences often reflected a tradeoff between growth and the ability to tolerate an extreme environment. Cold hardiness results indicate that red alder families are well adapted to their climate of origin, and may not be able to acclimate sufficiently to a northward assisted migration of genotypes. Nitrogen fixation results demonstrated gaps in our current knowledge of Frankia distribution and impact on the actinorhizal symbiosis in British Columbia. / Graduate
7

Nitrogen fixation by Ulex europaeus (gorse) and Cytisus scoparius (broom)

Reid, T. C. January 1973 (has links)
A series of glasshouse and laboratory experiments was carried out to enable comparison of two woody perennial legumes, gorse and broom, with other legumes, nodulated non-legumes and other biological nitrogen fixing systems. Both species had distinct juvenile phases in which broom closely resembled herbaceous species in appearance, but adult plants of both species bore little resemblance to each other or to other legume species. Nodule development was similar to that of other legumes, but mature nodules exhibited structural adaptations to longevity - meristematic activity, a well developed vascular system and numerous cytoplasmic granules in cortical cells. Acetylene reduction and ¹⁵N₂ fixation continued for much longer following excision than has been observed in other legumes. In all experiments, broom nodules exhibited higher rates of acetylene reduction and nitrogen fixation than did gorse nodules. The first detectable product of nitrogen fixation in excised nodules - ammonia - was rapidly incorporated into amide and ∝ amino groups and another unidentified fraction. The principle free amino acid in nodules and sap was asparagine. Its preponderance increased as plants aged. Whole nodulated plants and excised nodules of both species exhibited a relatively low temperature optimum for growth and nitrogen fixation (22°C). They were very sensitive to elevated temperatures. Results indicated that gorse and broom have relatively low light requirements. When aeration was sufficient, combined nitrogen had little effect on growth of nodulated plants. Nodulation in both species was reduced by increasing amounts of combined nitrogen. High levels (100 mg/1) of nitrate and ammonia caused considerable inhibition of nitrogen function. Both species showed large responses to phosphate, but were able to grow and fix nitrogen when supplied with low amounts of phosphate. Boron deficiency reduced nitrogen fixation. Nodulation was increased to compensate for this. Considerable amounts of nitrogen can be contributed to the ecosystem in gorse end broom litter. Direct transfer between gorse or broom and Pinus radiate is likely to be small and may be masked by competition for other nutrients. These findings are discussed with respect to the use of gorse and broom to overcome nitrogen deficiency in reafforestation on the Moutere Gravels, in Nelson, N.Z.

Page generated in 0.0949 seconds