• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Application of AcidoCEST MRI for Evaluating Tumor Acidosis in Pre-Clinical Cancer Models

Chen, Liu Qi January 2014 (has links)
Tumor acidosis is an important biomarker in cancer. We have developed a noninvasive imaging method, termed acidosis Chemical Exchange Saturation Transfer (acidoCEST) MRI to measure extracellular pH (pHe) in the tumor microenvironment. Chapter 1 introduces the importance of measuring tumor acidosis and presents various imaging modalities and their shortcoming to measure pHe. Chapter 2 describes the optimization of acidoCEST MRI for in vivo pHe measurement. The acidoCEST MRI protocol consists of a CEST-FISP acquisition and Lorentzian line shape fittings. We determined the optimal saturation time, saturation power and bandwidth, 5 sec, 2.8 µT and 90 Hz respectively. We also tried various routes of administration to increase contrast agent uptake in the tumor. We decided upon 200 µL bolus followed by 150 µL/hr infusion. The optimized acidoCEST MRI protocol was tested on a mammary carcinoma mouse model of MDA- MB-231. Our method can detect an increase in pHe in the bladder and tumor of the mice treated with bicarbonate. We used this optimized acidoCEST MRI method to measure pHe in lymphoma tumor model of Raji, Ramos and Granta 519 as described in Chapter 3. Pixel-wise pHe maps showed tumor heterogeneity. The pHe of Raji, Ramos and Granta 519 were determined to be mildly acidic with no significant difference. Chapter 4 describes the evolution of pixel-wise analysis in more detail. Besides the pHe map and spatial heterogeneity, we were able to determine the % contrast agent uptake. We monitored these biomarkers in two different mammary carcinoma mouse models, MDA- MB-231 and MCF-7 longitudinally and made comparisons between the different tumor models: MCF-7 were more acidic, more heterogeneous and faster growing than MDA- MB-231.
2

Interrogating Tumor Metabolism with AcidoCEST MRI

Akhenblit, Paul January 2016 (has links)
Tumor metabolism is a highly dysregulated process that is identified as a unique target for therapy. Current philosophy proposes that tumor metabolism is a plastic and flexible process which sustains proliferative and survival advantages. Tumors employ an anaerobic glycolytic pathway resulting in the overproduction of lactate. Additional thinking suggests that the conversion of pyruvate to lactate regenerates the NAD+ pool in the cell, maintaining a sustainable oxidative environment. Regardless of the reasons for lactate overproduction, its excretion and build up in the microenvironment results in acidic tumor microenvironments. Tumor acidosis has been measured with several different methods, but consistently averages from pH 6.6 to 7.0. Tumor acidity can thus be measured as a biomarker for tumor metabolism. This work examines the commonly explored energy pathways available to the cancer cell and a non-invasive MRI method to measure the efficacy of the tumor metabolism targeting agent. Appendix A is an introduction to tumor metabolism pathways and the large list of candidate therapies in interfering with energy production. Glucose, fatty acid, and glutamine metabolisms are all discussed along with PI3K/AKT/mTOR and HIF growth signals and ion transport. Magnetic resonance imaging and positron emission tomography are examined as imaging methods for non-invasively interrogating tumor acidosis. Appendix B presents the findings in a study where tumor metabolism was targeted with an mTOR inhibitor, where tumor growth rate was initially decreased and accompanied by an early, acute increase in tumor extracellular pH with acidoCEST MRI. Chapter 2 discusses the combination of a lactate dehydrogenase inhibitor in conjunction with doxorubicin in a breast cancer model. Tumor extracellular pH was shown to increase when measured with acidoCEST MRI, and an increase in cell death was measured. Chapter 4 discusses the studies and experimental designs that can be done in the near future.

Page generated in 0.0172 seconds