1 |
Development of a Plasma Spray Process Monitoring System through Aeroacoustic Signal AnalysisBlair, Taylor K. 09 May 2016 (has links)
Plasma spray coatings are vital to the capabilities of jet engines. They allow engines to operate at combustion temperatures that would otherwise melt the superalloy components. Coatings tighten clearance between rotating components, increasing engine compression. They prevent chemical attack and physical erosion. Plasma spray coatings are imperative to the durability and efficient operation of the modern jet engine. In this application coating material property variation has a significant cost. In addition to the variation inherent in the process, some of the biggest contributors to coating property variation have been traced to spray gun nozzle wear and powder feed variation[3, 4].
Presented here are multiple methods utilizing flow induced acoustic signals to quantify noise parameters, measure component wear, diagnose the plasma spray process and detect coating property deviation. Methods have been developed for offline and online analysis of components in addition to online process analysis. These include characterization of nozzle wear by throat roughness measurements and nozzle casting, offline detection of nozzle wear by attenuation of discrete tone generation and broadband signal variation, and offline measurement of powder port wear by jet screech frequency variation. Online methods include pre-ignition nozzle degree of wear measurement by discrete frequency changes; online parameter change detection, process deviation detection with potential source identification, as well as variation in coating property detection by broadband acoustic signal changes.
Offline methods allow for 100% accurate new nozzle manufacturer identification. By the same test nozzle wear state can be predicted with over 95% accuracy with the potential for a degree of wear determination. Internal diameter changes of less than 10 microns can similarly be detected. Analysis of online plasma spray acoustic signals as described here can distinguish nozzle state and powder feed variation with over 90% accuracy.
The capabilities developed here will aid in plasma spray process variation detection and contribute to identifying the source of this variation. This will improve coating quality and consistency, reduce failures, lower operational costs and ultimately make jet engines more economical, safer, and more fuel efficient with significant environmental and financial cost reduction. / Ph. D.
|
2 |
Metodika pro bezkontaktní diagnostiku automobilových tlumičů / Methodology for remote diagnostic of the automotive shock absorbersHalama, Jakub January 2018 (has links)
The diploma thesis deals with the application of acoustic methods for evaluating the technical condition of the shock absorbers. Analysis of acoustic radiation during damping operation leads to the definition of a new non-contact diagnostic methodology that can determine the condition of the shock absorbers. The first part of the thesis focuses on the noise radiation of the shock absorbers, which is caused by discontinuous dumping. Further, the methods for the noise source localization available at The Institute of Machine and Industrial Design are described – with their functionalities, advantages and limitations. Based on all the information, an appropriate method is selected and used in the experimental part of this work. Then, aeration and removing the full volume of oil with damage of the shock absorber tube are caused (induced) on several types of the shocks. Noise radiation is measured by a microphone array and by a sound meter; the acoustic maps, frequency spectra and the synchronous filtration graphs are calculated from the measured data. From the differences in the acoustic radiations of each shock condition, a suitable diagnostic criterion for a specific shock absorber is defined. The final part discusses obtained results. Based on these results, a general diagnostic methodology, applicable to any type of shock absorber, is formulated.
|
3 |
Akustická diagnostika strojů / Acoustic diagnostics of machinesGajdoš, Petr January 2012 (has links)
The aim of this master´s thesis is to work out a comparison and evaluation of selected methods used for sound field mapping. Thesis will include software tools and results of sample measurement on test object for each mapping method.
|
4 |
Využití akustické emise při sledování hydraulických strojů / Monitoring of hydraulic machines using acoustic emissionsZávorka, Dalibor January 2017 (has links)
The goal of this diploma thesis is to clarify possibilities of usage of acoustic emission as a hydraulic machinery diagnostics tool. Especially for exposing presence of ruptures or cracks in the parts of machine, assuming changes in acoustic exposure of the part during operation. This clarification is based on series of simple measured experiments, which consist of monitoring the bolt placed in fluid stream inside of a pipe. This bolt was preloaded against inner wall of pipe by appropriate tightening torque. This preload is supposed to simulate effects of the size of rupture. High preload simulates small rupture or none in object and respectively small preload is supposed to simulate big rupture. A group of pressure sensors and accelerometers measures experiments and their evaluations are processed by script created in software MATLAB. Outputs of this script are charts with effective values of respective sensors from the entire record split into individual frequency spectrums. These charts compare spectrums of each configuration to judge effects of parameters changes.
|
Page generated in 0.0902 seconds