1 |
Establishing a cost effective method to quantify and predict the stability of solid rocket motors using pulse testsRousseau, Charle Werner 03 1900 (has links)
Please refer to full text to view abstract.
|
2 |
A Study of the Dynamics of Laminar and Turbulent Fully and Partially Premixed FlamesKhanna, Vivek K. 07 August 2001 (has links)
This present research effort was directed towards developing reduced order models for the dynamics of laminar flat flames, swirl stabilized turbulent flames, and in evaluating the effects of the variation in fuel composition on flame dynamics. The laminar flat flame study was conducted on instrument grade methane, propane, and ethane flames for four total flow rates from 145 cc/sec to 200 cc/sec, and five equivalence ratios from 0.5 to 0.75. The analysis was done by measuring the frequency resolved velocity perturbations, u', and the OH* chemiluminescence, as a measure of unsteady heat release rate, q'. The experimental data showed the corresponding flame dynamics to be fourth order in nature with a pure time delay. One of the resonance was shown to represent the pulsation of the flame location caused by fluctuation in the flame speed and fluctuating heat losses to the flame stabilizer. The other resonance was correlated to the dynamics of the chemical kinetics involved in the combustion process. The time delay was correlated to the chemical time delay. Upon comparing the results of the experiments with the three fuels, it was concluded that for all equivalence ratios studied, propane flame had a higher dynamic gain than methane flames. Ethane flames exhibited a higher dynamic gain than methane flame in the frequency range of 20-100 Hz. Thus, burning of propane instead of methane increased the likelihood of the occurrence of thermo-acoustic instabilities. The experimental techniques developed during the dynamic studies conducted on laminar flat flames were applied to swirl stabilized turbulent flames. Experiments were performed for QAir = 15 scfm and 20 scfm, F = 0.55, 0.6, 0.65, and S = 0.79 and 1.19. The results of fully premixed experiments showed that the flame behaved as a 8th order low pass filter. The results of the partially premixed experiment exhibited a rich spectra, which maintained its bandwidth over the entire range of frequency studied. Comparison of fully and partially premixed flames in the frequency range of 200-400 Hz, indicated that at overall lean conditions the dynamic gain of the totally premixed flames was almost an order of magnitude lower than that of the partially premixed conditions. Thus, it was concluded that combustors with fully premixed flames have a higher probability of being thermo-acoustically stable than those with partially premixed flames. / Ph. D.
|
3 |
CFD analysis/optimization of thermo-acoustic instabilities in liquid fuelled aero stationary gas turbine combustorsLei, Shenghui January 2010 (has links)
It has been recognized that the evaporation process is one of the pivotal mechanisms driving thermo-acoustic instability in gas turbines and rockets in particular. In this regard, this study is principally focused on studying the evaporation process relevant to thermo-acoustic instability from three complementary viewpoints in an effort to contribute to an overall instability model driven primarily by evaporation in gas turbine combustors. Firstly, a state of the art LES algorithm is employed to validate an evaporation model to be employed in predictive modelling regarding combustion instabilities. Good agreement between the numerical predictions and experimental data is achieved. Additionally, transient sub-critical droplet evaporation is investigated numerically. In particular, a numerical method is proposed to capture the extremely important pressure-velocity-density coupling. Furthermore, the dynamic system nonlinear behaviour encountered in classical thermo-acoustic instability is investigated. The Poincaré map is adopted to analyse the stability of a simple non-autonomous system considering a harmonic oscillation behaviour for the combustion environment. The bifurcation diagram of a one-mode model is obtained where the analysis reveals a variety of chaotic behaviours for some select ranges of the bifurcation parameter. The bifurcation parameter and the corresponding period of a two-mode dynamic model are calculated using both analytical and numerical methods. The results computed by different methods are in good agreement. In addition, the dependence of the bifurcation parameter and the period on all the relevant coefficients in the model is investigated in depth. Moreover, a discrete dynamic model accounting for both combustion and vaporization processes is developed. In terms of different bifurcation parameters relevant to either combustion or evaporation, various bifurcation diagrams are presented. As part of the nonlinear characterization, the governing process Lyapunov exponent is calculated and employed to analyze the stability of the particular dynamic system. The study has shown conclusively that the evaporation process has a significant impact on the intensity and nonlinear behaviour of the system of interest, vis-à-vis a model accounting for only the gaseous combustion process. Furthermore, two particular nonlinear control methodologies are adopted to control the chaotic behaviour displayed by the particular aperiodic motions observed. These algorithms are intended to be implemented for control of combustion instability numerically and experimentally to provide a rational basis for some of the control methodologies employed in the literature. Finally, a state of the art neural network is employed to identify and predict the nonlinear behaviour inherent in combustion instability, and control the ensuing pressure oscillations. Essentially, the NARMAX model is implemented to capture nonlinear dynamics relating the input and output of the system of interest. The simulated results accord with the results reported. Moreover, a control system using the NARMA-L2 algorithm is developed. The simulation conclusively points to the fact that the amplitude of pressure oscillations can be attenuated to an acceptable level and the controller proposed may be implemented in a practical manner.
|
4 |
Acoustic absorption and the unsteady flow associated with circular apertures in a gas turbine environmentRupp, Jochen January 2013 (has links)
This work is concerned with the fluid dynamic processes and the associated loss of acoustic energy produced by circular apertures within noise absorbing perforated walls. Although applicable to a wide range of engineering applications particular emphasis in this work is placed on the use of such features within a gas turbine combustion system. The primary aim for noise absorbers in gas turbine combustion systems is the elimination of thermo-acoustic instabilities, which are characterised by rapidly rising pressure amplitudes which are potentially damaging to the combustion system components. By increasing the amount of acoustic energy being absorbed the occurrence of thermo-acoustic instabilities can be avoided. The fundamental acoustic characteristics relating to linear acoustic absorption are presented. It is shown that changes in orifice geometry, in terms of gas turbine combustion system representative length-to-diameter ratios, result in changes in the measured Rayleigh Conductivity. Furthermore in the linear regime the maximum possible acoustic energy absorption for a given cooling mass flow budget of a conventional combustor wall will be identified. An investigation into current Rayleigh Conductivity and aperture impedance (1D) modelling techniques are assessed and the ranges of validity for these modelling techniques will be identified. Moreover possible improvements to the modelling techniques are discussed. Within a gas turbine system absorption can also occur in the non-linear operating regime. Hence the influence of the orifice geometry upon the optimum non-linear acoustic absorption is also investigated. Furthermore the performance of non-linear acoustic absorption modelling techniques is evaluated against the conducted measurements. As the amplitudes within the combustion system increase the acoustic absorption will transition from the linear to the non-linear regime. This is important for the design of absorbers or cooling geometries for gas turbine combustion systems as the propensity for hot gas ingestion increases. Hence the relevant parameters and phenomena are investigated during the transition process from linear to non-linear acoustic absorption. The unsteady velocity field during linear and non-linear acoustic absorption is captured using particle image velocimetry. A novel analysis technique is developed which enables the identification of the unsteady flow field associated with the acoustic absorption. In this way an investigation into the relevant mechanisms within the unsteady flow fields to describe the acoustic absorption behaviour of the investigated orifice plates is conducted. This methodology will also help in the development and optimisation of future damping systems and provide validation for more sophisticated 3D numerical modelling methods. Finally a set of design tools developed during this work will be discussed which enable a comprehensive preliminary design of non-resonant and resonant acoustic absorbers with multiple perforated liners within a gas turbine combustion system. The tool set is applied to assess the impact of the gas turbine combustion system space envelope, complex swirling flow fields and the propensity to hot gas ingestion in the preliminary design stages.
|
5 |
Experimental Measurement Of Flame Response To Acoustic OscillationsAlexander, Sam 05 1900 (has links) (PDF)
Acoustic instabilities in a combustion chamber arise due to the coupling of acoustic pressure with in-phase heat-release, and are characterized by large amplitude oscillations of one or more natural modes of combustor. Even though an array of studies, both theoretical and experimental, has been conducted by a number of authors in this field to extract the flame response, most of these are based on kinematic flame models. In this dissertation, an experimental study of a subsonic flame's intrinsic response to acoustic pressure perturbations is performed for the case of a tube closed at one end and the other end opened to the atmospheric conditions. Pressure fluctuations inside the tube are measured for hot and cold side flows, and their varying trend is explained. The frequencies obtained from Fourier transform analysis exhibit a strong dependence with the distance between the stabilized flame position and open end of the tube. For different values of flame position (xf ), the values of growth constant 's' are calculated from the pressure versus time data readings procured from acoustic pressure transducer and dominant frequencies are analyzed from windowed FFT of the same. The expression for obtaining response function from the measured pressure fluctuations has been derived from the 1-D linearized conservation equations. The undamped response function plot is obtained by adding the decay rates at different frequencies inside the tube to the corresponding growth rates. Finally, the effect of blockage of pre-mixed flow on the growth rates inside the tube and consequently, the flame response values, is studied by repeating the experiment with different types of flame holders. A large number of theoretical flame-response models have been developed in modern literature, and some of these models are compared with the experimentally obtained response. Suggestions are also cited in this study so as to account for the observed deviations in trends. This includes a revisit of the intrinsic flame model by incorporating the effect of flame-area perturbations, with the aid of analyzed steady flame images.
|
Page generated in 0.1038 seconds