• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Material characterization with the Rayleigh-to-compressional conversion acoustic microscope lens

Esonu, Michael O. (Michael Ogbonna) January 1984 (has links)
No description available.
2

An acoustic microscope using a Rayleigh-to-compressional conversion lens /

Jen, C. K. January 1982 (has links)
This dissertation descibes the development and the application of a planar acoustic microscope lens. The prototype lens consists of a pair of concentric circular metal electrodes plated on the interface between a piezoelectric solid and a liquid medium. These two circular electrodes excite Rayleigh waves of velocity V(,R) which are converging towards the common centre but which are phase matched to the compressional waves of the velocity V(,c) in the liquid in a very narrow range of zenith angle about a value given by (phi)(,m) = sin('-1)V(,c)/V(,R). The waves radiated into the liquid are thus in the form of a hollow cone converging onto a common focal spot on the lens axis at a distance determined by this zenith angle and the radius of the electrodes. This planar acoustic microscope lens is called the Rayleigh-to-Compressional Conversion (RCC) lens. / Since the lens behavior is determined by the geometry of the electrodes and because of the simplicity of the photolithographic fabrication process of the RCC lens, more complicated configurations can be made as easily as the prototype; for example, semicircular lenses have been produced and analyzed. / A mathematical analysis based on a spatial impulse of stress applied on the solid/liquid boundary has been used to calculate the focussing characteristics of the RCC lens. For isotropic solid not only the particle displacements of the compressional wave in the liquid have been computed, but also that of the waves radiated into the solid. For anisotropic solids only the radiation pattern of the compressional wave in the liquid, which is the one of most interesting, has been investigated using an isotropic equivalent model. In the model the circular shape of the electrodes has been considered to consist of many line segments and it has been used to analyze the focal properties of partial circles and anisotropic substrate. / This planar acoustic microscope lens has been employed in standard transmission and reflection imaging experiments to demonstrate the structure of its focal spot and in particular the lack of spherical aberration when traversing a metal surface. Because of the hollow conical nature of the beam away from the focal region the RCC lens is inherently adapted to dark field microscopy. Some properties of semicircular lens are also given as examples in linear and nonlinear operation. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI
3

Material characterization with the Rayleigh-to-compressional conversion acoustic microscope lens

Esonu, Michael O. (Michael Ogbonna) January 1984 (has links)
No description available.
4

An acoustic microscope using a Rayleigh-to-compressional conversion lens /

Jen, C. K. January 1982 (has links)
No description available.
5

DESIGN OF A 5X AFOCAL RELAY LENS FOR A HETERODYNE SYSTEM (LASER)

Tidwell, Steve Chase, 1957- January 1986 (has links)
No description available.
6

Design, modelling, characterization and implementation of acoustic lenses for modulation of ultrasound beams.

Tarrazó Serrano, Daniel 21 January 2021 (has links)
Tesis por compendio / [ES] La capacidad de controlar y modificar los haces de energía ha sido motivo de investigación por parte de la comunidad científica desde largo tiempo atrás. En el campo de la acústica, este control energético de las ondas mecánicas tiene numerosas aplicaciones. Desde las aplicaciones industriales, alimentarias, farmacéuticas, etcétera hasta la biomedicina. Esta tesis se basa en la aplicación del control y modulación focal de los ultrasonidos para el uso en este último campo. Se puede modular y controlar los focos de ultrasonidos de diferentes formas. En este caso, se han desarrollado lentes planas que utilizan el principio de la difracción para lograr focalizar los haces. Las ventajas del uso de lentes planas de focalización permiten ser implementadas de forma sencilla en procesos de mecanización e incluso mediante impresión 3D. Se propone utilizar transductores planos que al emitir sobre una lente acústica, se produzca una conformación focal de características controladas. La lente conocida como lente de Fresnel (FZP) ha sido escogida como base de diseño en la implementación de las diferentes soluciones que logran cumplir con los objetivos marcados. Mediante la aplicación de modificaciones en una FZP se puede lograr pasar de una lente con capacidades extraordinarias de focalización a una lente capaz de controlar la resolución lateral y la profundidad de foco e incluso mejorar la ganancia. El objetivo final de aplicación es el uso en transductores de ultrasonidos de alta intensidad conocidos como HIFU. Mejorar la capacidad de resolución hace que se puedan desarrollar mejores terapias oncológicas que supongan un índice mayor de éxito en la lucha contra el cáncer. En la presente tesis se ha propuesto, además, una novedosa lente FZP basada en el cambio de fase que puede resultar un antes y un después en aplicaciones biomédicas. Se ha conseguido no solo mejorar la eficiencia de una FZP, sino que se ha conseguido implementar en materiales compatibles con resonancia magnética. Se han desarrollado modelos numéricos basados en el método de los elementos finitos que emulan la física involucrada. Las medidas han sido realizadas en condiciones controladas por un sistema robotizado de alta precisión. Todos los resultados obtenidos y publicados han sido desarrollados de forma numérica y experimental, validándose el método de trabajo y dando consistencia a las soluciones propuestas. / [CA] La capacitat de controlar i modificar els feixos d'energia ha sigut motiu d'investigació per part de la comunitat científica des de llarg temps arrere. En el camp de l'acústica, este control energètic de les ones mecàniques té nombroses aplicacions. Des de les aplicacions industrials, alimentàries, farmacèutiques, etcètera fins la biomedicina. Esta tesi es basa en l'aplicació del control i modulació focal dels ultrasons per a l'ús en este últim camp. Es pot modular i controlar els focus d'ultrasons de diferents formes. En este cas, s'han desenvolupat lents planes que utilitzen el principi de la difracció per a aconseguir focalitzar els feixos. Els avantatges de l'ús de lents planes de focalització permeten ser implementades de forma senzilla en processos de mecanització i inclús per mitjà d'impressió 3D. Es proposa utilitzar transductores plans que a l'emetre sobre una lent acústica, es produïsca una conformació focal de característiques controlades. La lent coneguda com a lent de Fresnel (FZP) ha sigut triada com a base de disseny en la implementació de les diferents solucions que aconseguixen complir amb els objectius marcats. Per mitjà de l'aplicació de modificacions en una FZP es pot aconseguir passar d'una lent amb capacitats extraordinàries de focalització a una lent capaç de controlar la resolució lateral i la profunditat de focus i inclús millorar el guany. L'objectiu final d'aplicació és l'ús en transductores d'ultrasons d'alta intensitat coneguts com HIFU. Millorar la capacitat de resolució fa que es puguen desenvolupar millors teràpies oncològiques que suposen un índex major d'èxit en la lluita contra el càncer. En la present tesi s'ha proposat, a més, una nova lent FZP basada en el canvi de fase que pot resultar un abans i un després en aplicacions biomèdiques. S'ha aconseguit no sols millorar l'eficiència d'una FZP, sinó que s'ha aconseguit implementar en materials compatibles amb ressonància magnètica. S'han desenvolupat models numèrics basats en el mètode dels elements finits que emulen la física involucrada. Les mesures han sigut realitzades en condicions controlades per un sistema robotitzat d'alta precisió. Tots els resultats obtinguts i publicats han sigut desenvolupats de forma numèrica i experimental, validant-se el mètode de treball i donant consistència a les solucions proposades. / [EN] The ability to control and modify energy beams has been the subject of research by the scientific community for a long time. In the acoustic field, this energetic control of mechanical waves has numerous applications. From industrial, food, pharmaceutical applications, et cetera, to biomedicine. This thesis is based on the ultrasound control and focal modulation applications. It is possible to modulate and control the ultrasound focii in different ways. In this case, flat lenses were developed based on the principle of diffraction to focus the beams. The advantages of using flat focusing lenses allow them to be easily implemented in machining and drilling processes and even through 3D printing. It was proposed to use planar transducers that when emitting on an acoustic lens, controlled characteristics of focal conformation were produced. The lens known as Fresnel Zone Plane (FZP) was chosen as the implementation design basis for the different solutions that manage to fulfill the objectives set. By applying modifications to an FZP it was possible to go from a lens with extraordinary focusing capabilities to a lens that was capable to control lateral resolution, depth of focus and even improving the gain. The final objective application was the use in high intensity ultrasound transducers known as HIFU. Improving the ability to resolve makes it possible to develop better cancer therapies that represent a higher rate of success in the fight against cancer. In the present thesis, a novel FZP lens based on phase change has also been proposed that can be a before and after in biomedical applications. It has not only been possible to improve the efficiency of an FZP, but it has also been possible to implement it in materials compatible with magnetic resonance imaging. Numerical models based on the finite element method were developed for emulating the involved physics. Measurements were carried out under controlled conditions by a high precision robotic system. All the results obtained and published were developed numerically and experimentally, validating the working method and giving consistency to the proposed solutions. / I want to acknowledge the following public funding sources that have made possible this research: Grant BES-2016-077133 (Ministerio de Ciencia, Innovación y Universidades de España) Project TEC2015-70939-R (MINECO/FEDER). Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program. / Tarrazó Serrano, D. (2020). Design, modelling, characterization and implementation of acoustic lenses for modulation of ultrasound beams [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159895 / Compendio
7

Design of Acoustic Lenses for Ultrasound Focusing Applications

Pérez López, Sergio 17 January 2022 (has links)
Tesis por compendio / [ES] La focalización de ultrasonidos tiene muchas aplicaciones en una gran variedad de áreas tanto científicas como industriales. Los ultrasonidos focalizados son una de las herramientas principales usada por médicos en todo el mundo para obtener imágenes biomédicas de diferentes tipos de tejidos y órganos de manera no invasiva. En las últimas décadas, el uso de ultrasonidos focalizados de alta intensidad (HIFU, por sus siglas en inglés) ha surgido como una de las técnicas principales para el tratamiento de cáncer mediante la ablación térmica de tumores de manera no invasiva. Además, los ultrasonidos focalizados están emergiendo en los últimos años como uno de los métodos más prometedores para el tratamiento de las enfermedades cerebrales, con la aparición de nuevas técnicas disruptivas como la apertura reversible de la barrera hematoencefálica o la neuromodulación. En entornos industriales, los ultrasonidos son ampliamente utilizados como uno de los métodos principales para la evaluación no destructiva de materiales y estructuras, debido a que las ondas acústicas pueden penetrar en los objetos a distancias donde la luz no puede debido a la elevada absorción y dispersión. En este sentido, diseñar estructuras capaces de focalizar ultrasonidos es de una gran relevancia tanto para la comunidad científica como para los sectores médicos e industriales. Esta tesis presenta nuevos diseños de lentes acústicas capaces de controlar los parámetros principales del haz de ultrasonidos focalizados, proporcionando diferentes tipos de perfiles de focalización adecuados para una gran variedad de aplicaciones y escenarios. En particular, se han diseñado y adaptado al campo de los ultrasonidos las lentes de Fresnel (Fresnel Zone Plates, FZPs), ampliamente utilizadas en el campo de la óptica. Se ha presentado una nueva técnica de modulación espacio-temporal capaz de controlar la posición del foco de ultrasonidos tanto en espacio como en tiempo, aumentando así la versatilidad de este tipo de dispositivos. También se ha demostrado el funcionamiento en el campo de la acústica de nuevos diseños basados en aplicar secuencias binarias a una lente de Fresnel convencional, como las secuencias fractales de Cantor o las secuencias de M-bonacci generalizadas, capaces de modificar las propiedades de focalización de las lentes, incluyendo el número, posición y forma de los focos acústicos. Además, se introduce un nuevo diseño de lentes esféricas rellenas de líquido capaces de generar jets ultrasónicos, con mucho potencial en aplicaciones de imagen de alta resolución en campo cercano. Se ha demostrado que, cambiando el líquido interno de la lente o ajustando el ratio de mezcla entre dos líquidos, se pueden controlar los parámetros principales del jet. Los diseños propuestos en la tesis han sido validados tanto empleando simulaciones numéricas como realizando medidas experimentales, allanando el camino para el uso de este tipo de estructuras en aplicaciones de focalización de ultrasonidos. / [CA] La focalització d'ultrasons té moltes aplicacions en moltes àrees científiques i industrials. Els ultrasons focalitzats són una de les eines principals utilitzada per metges a tot el món per obtenir imatges biomèdiques de diferents tipus de teixits i òrgans de manera no invasiva. En les últimes dècades, els ultrasons focalitzats d'alta intensitat (HIFU, per les seues sigles en anglès) han aparegut com una de les tècniques principals per al tractament de càncer mitjançant l'ablació de tumors de manera no invasiva. A més, els ultrasons focalitzats estan emergint en els últims anys com un dels mètodes més prometedors per al tractament de les malalties cerebrals, amb l'aparició de noves tècniques disruptives com l'obertura reversible de la barrera hematoencefàlica o la neuromodulació. En entorns industrials, els ultrasons són àmpliament utilitzats com un dels mètodes principals per a l'avaluació no destructiva de materials i estructures, pel fet que les ones acústiques poden penetrar en els objectes a distàncies on la llum no pot a causa de l'elevada absorció i dispersió. En aquest sentit, dissenyar estructures capaces de focalitzar ultrasons és d'una gran rellevància tant per a la comunitat científica com per als sectors mèdics i industrials. Aquesta tesi presenta nous dissenys de lents acústiques capaços de controlar els paràmetres principals del feix d'ultrasons focalitzats, proporcionant diferents tipus de perfils de focalització adequats per a una gran varietat d'aplicacions i escenaris. En particular, s'han dissenyat i adaptat al camp dels ultrasons les lents de Fresnel (Fresnel Zone Plates, FZPs), àmpliament utilitzades en el camp de l'òptica. S'ha presentat una nova tècnica de modulació espai-temporal capaç de controlar la posició del focus d'ultrasons tant en espai com en temps, augmentant així la versatilitat d'aquest tipus de dispositius. També s'ha demostrat el funcionament en el camp de l'acústica de nous dissenys basats en aplicar seqüències binàries a una lent de Fresnel convencional, com les seqüències fractals de Cantor o les seqüències de M-bonacci generalitzades, capaces de modificar les propietats de focalització de les lents, incloent el nombre, posició i forma dels focus acústics. A més, s'introdueix un nou disseny de lents esfèriques plenes de líquid capaces de generar jets ultrasònics, amb molt potencial en aplicacions d'imatge d'alta resolució en camp proper. S'ha demostrat que, canviant el líquid intern de la lent o ajustant la ràtio de barreja entre dos líquids, es poden controlar els paràmetres principals del jet. Els dissenys proposats en la tesi han estat validats tant emprant simulacions numèriques com realitzant mesures experimentals, aplanant el camí per a l'ús d'aquest tipus d'estructures en aplicacions de focalització d'ultrasons. / [EN] Ultrasound focusing has many applications in a wide range of fields. Focused ultrasound is one of the main tools used by doctors all over the world to obtain biomedical images of different kind of tissues non-invasively. In the past decades, high intensity focused ultrasound (HIFU) appeared as one of the fundamental techniques for cancer treatment through non-invasive thermal tumor ablation. In addition, focused ultrasonic waves are recently emerging as one of the main tools to treat brain diseases, with novel disruptive techniques such as blood-brain barrier opening or neuromodulation. In industrial environments, ultrasonic waves are widely employed as one of the primary methods for the non-destructive evaluation (NDE) of materials and structures, as acoustic waves are able to penetrate deep into objects otherwise opaque using optical techniques. In this sense, designing structures capable of focusing ultrasonic waves is of great interest and relevance for the scientific, the industrial, and the biomedical sectors. This thesis devises new designs of acoustic lenses capable of controlling the main parameters of the focused ultrasound beam, achieving different kinds of focusing profiles suitable for a wide variety of scenarios. In particular, Fresnel Zone Plates (FZPs), commonly used in optics, are designed and adapted to the ultrasound domain. A novel spatio-temporal modulation technique capable of controlling the ultrasound focus location in both time and space is presented, increasing the versatility of this kind of devices. New design techniques based on applying a binary sequence to FZPs are also demonstrated, such as Cantor fractal sequences or generalized M-bonacci sequences, which modify the focusing properties of the lens, including the number, location, and shape of the different acoustic foci. In addition, acoustic jets generated by liquid-filled spherical lenses are devised for near-field high resolution imaging, demonstrating their applicability in the ultrasound domain. It is demonstrated that, by changing the inner liquid of the spherical lens or by tuning the mixing ratio between two liquids, the main focal parameters of the ultrasonic jet can be accurately controlled. The proposed designs are validated using both numerical simulations and experimental measurements, paving the way for the use of these kind of structures in focused ultrasound applications. / This work would not have been possible without the following funding sources: PAID-01-18 personal FPI grant from Universitat Politècnica de València; Spanish government MINECO TEC2015-70939-R project; Spanish government MICINN RTI2018-100792-B-I00 project; Generalitat Valenciana AICO/2020/139 project. / Pérez López, S. (2021). Design of Acoustic Lenses for Ultrasound Focusing Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179907 / Compendio
8

Acoustic Holograms for Hyperthermia and Transcranial Ultrasound

Andrés Bautista, Diana 04 July 2024 (has links)
[ES] Los ultrasonidos se han empleado desde los años 90 para el tratamiento de múltiples patologías gracias a su carácter no invasivo y no ionizante, desde el tratamiento localizado del cáncer hasta terapias neurológicas. La focalización de estas ondas de presión y la conformación del haz ha sido un problema que desde varias perspectivas se ha intentado abordar, con el uso de lentes focalizadoras, transductores focalizados y los más sofisticados sistemas phased-array compuestos por múltiples transductores con control electrónico de amplitud y fase. Estos sistemas presentan varios inconvenientes, como el escaso control del haz que ofrecen los transductores focalizados, con un foco fijo y sin control de las posibles distorsiones del campo que puede introducir el medio, o el elevado coste derivado de la compleja electrónica de los sistemas phased-arrays, aunque proporcionan un mejor control del foco y compensación de aberraciones. La revolucionaria idea de los hologramas acústicos como elementos pasivos impresos con tecnología 3D llegó como una alternativa de bajo coste a los previos sistemas. En primer lugar se describió su uso en medios homogéneos para generar las más diversas imágenes acústicas, pero pronto se empezó a estudiar su viabilidad para focalizar haces de ultrasonidos en el interior del cerebro, resultando ser muy útiles en la corrección de las aberraciones que el cráneo introduce en el frente de ondas. Las lentes holográficas son capaces de codificar tanto el campo que se desea generar como las distorsiones de fase que puede introducir el medio en el que se propagan los ultrasonidos. En esta tesis se estudia el diseño de hologramas acústicos y su aplicación en el ámbito biomédico. La tesis puede ser dividida en tres grandes partes: una primera en la cual se describen nuevos métodos para el diseño de lentes holográficas, una segunda en la que se emplean los hologramas ultrasónicos para generación de hipertermia, y una tercera en la que se estudia su uso para terapias transcraneales. En la primera parte de la tesis se investiga el diseño de lentes holográficas para transductores con geometría esférica como alternativa a las lentes planas ya descritas previamente. Además, se estudia un nuevo método para codificar el campo acústico en las lentes de forma que se mejore la imagen producida por ellas, ajustándose más a la deseada. En la segunda parte se estudia cómo es el patrón térmico que genera el campo acústico producido por una lente holográfica cuando se aplica sobre un material con absorción acústica y cómo afecta la difusión térmica a éste. Esta difusión tiene como efecto que el patrón térmico con el tiempo no se parezca al acústico, y que las lentes deban tener en cuenta este proceso en su diseño para aplicaciones térmicas, especialmente si se desean regiones uniformes de calentamiento. Se demuestra cómo la hipertermia generada por ultrasonidos es más dañina en esferoides de células tumorales que la hipertermia tradicional. En la tercera parte se demuestra la viabilidad de los hologramas ultrasónicos para tratamientos neurológicos, aplicados desde la ventana temporal para reducir el eventual calentamiento del hueso que se produce. Además, se estudia en experimentos ex-vivo el campo acústico producido por lentes holográficas a través de un cráneo de macaco, aplicando técnicas de proyección holográfica para obtener aún más información de estas medidas y se diseña un sistema para aplicar estos hologramas en experimentos in-vivo con macacos y comprobar la viabilidad de la apertura de la barrera hematoencefálica de forma localizada. Esta tesis se enfoca a un mejor diseño y entendimiento de las emergentes lentes holográficas, así como a estudiar su validez en aplicaciones biomédicas de gran interés como son la hipertermia, la neuromodulación y la apertura de la barrera hematoencefálica para la administración de fármacos en el cerebro. / [CA] Els ultrasons s'han emprat des dels anys 90 per al tractament de múltiples patologies gràcies al seu caràcter no invasiu i no ionitzant, des del tractament localitzat del càncer fins a teràpies neurològiques. La focalització d'estes ones de pressió i la conformació del feix acústic ha sigut un problema que des de diverses perspectives s'ha intentat abordar, amb l'ús de lents focalizadores, transductors focalitzats i els més sofisticats sistemes phased-array compostos per múltiples transductors amb control individual d'amplitud i fase. Estos sistemes presenten diversos inconvenients, com l'escàs control del feix que ofereixen els transductors focalitzats, amb un focus fix i sense control de les possibles distorsions del camp que pot introduir el medi, o l'elevat cost derivat de la complexa electrònica dels sistemes phased-array, encara que proporcionen un millor control del focus i compensació d'aberracions. La revolucionària idea dels hologrames acústics com a elements passius impresos amb tecnologia 3D va arribar com una alternativa de baix cost als previs sistemes. En primer lloc es va descriure el seu ús en medis homogenis per a generar les més diverses imatges acústiques, però prompte es va començar a estudiar la seua viabilitat per a focalitzar feixos d'ultrasons a l'interior del cervell, resultant ser molt útils en la correcció de les aberracions que el crani introduïx en el front d'ones. Les lents hologràfiques són capaces de codificar tant el camp que es desitja generar com les distorsions de fase que pot introduir el medi en el qual es propaguen els ultrasons. En esta tesi s'estudia el disseny d'hologrames acústics i la seua aplicació en l'àmbit biomèdic. La tesi pot ser dividida en tres grans parts: una primera en la qual se descriuen nous mètodes per al disseny de lents hologràfiques, una segona en la qual s'empren els hologrames ultrasònics per a generació d'hipertèrmia i una tercera en la qual s'estudia el seu ús per a teràpies transcranials. En la primera part de la tesi s'investiga el disseny de lents hologràfiques per a transductors amb geometria esfèrica com a alternativa a les lents planes ja descrites prèviament. A més, s'estudia un nou mètode per a codificar el camp acústic en les lents de manera que es millore la imatge produïda per elles, ajustant-se més a la desitjada. En la segona part s'estudia com és el patró tèrmic que genera el camp acústic produït per una lent hologràfica quan s'aplica sobre un material absorbent i com afecta la difusió tèrmica a aquest. Esta difusió té com a efecte que el patró tèrmic amb el temps no se semble a l'acústic, i les lents hagen de tindre en compte aquest procés en el seu disseny per a aplicacions tèrmiques, especialment si es desitgen regions uniformes de calfament. Es demostra com la hipertèrmia generada per ultrasons és més nociva en esferoides tumorals que la hipertèrmia tradicional. En la tercera part es demostra la viabilitat dels hologrames ultrasònics per a tractaments neurològics, aplicats des de la finestra temporal per a reduir el calfament de l'os que es produïx. A més, s'estudia en experiments ex-vivo el camp acústic produït per lents hologràfiques a través d'un crani de macaco, aplicant tècniques de projecció hologràfica per a obtindre encara més informació d'estes mesures i es dissenya un sistema per a aplicar estos hologrames en experiments in-vivo amb macacos i comprovar la viabilitat de l'obertura de la barrera hematoencefàlica de forma localitzada. Esta tesi s'enfoca a un millor disseny i enteniment de les emergents lents hologràfiques, així com en l'estudi de la seua validesa en aplicacions biomèdiques de gran interès com són la hipertèrmia, la neuromodulació i l'obertura de la barrera hematoencefàlica per a l'administració de fàrmacs en el cervell. / [EN] Ultrasound has been used since the 1990s for the treatment of multiple pathologies thanks to its non-invasive and non-ionising nature, from localised cancer treatment to neurological therapies. The focusing of these pressure waves and beam shaping has been a problem that has been tackled from various perspectives, with the use of focusing lenses, focused transducers and the more sophisticated phased-array systems composed of multiple transducers with electronic amplitude and phase control. These systems have several drawbacks, such as the poor beam control offered by focused transducers, with a fixed focus and no control of possible field distortions introduced by the medium, or the high cost due to the complex electronics of phased-array systems, although they provide better focus control and aberration compensation. The revolutionary idea of acoustic holograms as passive 3D printed elements came as a low-cost alternative to these previous systems. They were first described to be used in homogeneous media to generate a wide range of acoustic images, but their feasibility for focusing ultrasound beams inside the brain was soon studied and proved to be very useful in correcting the aberrations that the skull introduces into the wavefront. Holographic lenses are capable of encoding both the field to be generated and the phase distortions that may be introduced by the medium in which the ultrasound propagates. This thesis studies the design of acoustic holograms and their application in the biomedical field. The thesis can be divided into three main parts: a first one in which new methods for the design of holographic lenses are described, a second one in which ultrasonic holograms are used for hyperthermia generation, and a third one in which their use for transcranial therapies is studied. The first part of the thesis investigates the design of holographic lenses for transducers with spherical geometry as an alternative to the previously described flat lenses. In addition, a new method is studied to encode the acoustic field in the lenses in order to improve the image produced by them, adjusting it more closely to the desired image. The second part studies the thermal pattern generated by the acoustic field produced by a holographic lens when it is applied to an absorbing material and how thermal diffusion affects it. This diffusion has the effect that the thermal pattern over time does not resemble the acoustic pattern, and lenses must take this process into account in their design for thermal applications, especially if uniform regions of heating are desired. The method is tested on multiple tumour spheroids, and results show that ultrasound-mediated hyperthermia is shown to be more damaging to tumour cell spheroids than traditional hyperthermia. The third part demonstrates the feasibility of ultrasonic holograms for neural treatments, applied from the temporal window to reduce the bone heating that occurs. In addition, the acoustic field produced by holographic lenses through a macaque skull is studied in ex-vivo experiments, applying holographic projection techniques to obtain even more information from these experiments. A system is designed to apply these holograms in in-vivo experiments with macaques to test the feasibility of opening the blood-brain barrier in a localized manner. This thesis focuses on a better design and understanding of the emerging holographic lenses, as well as on studying their validity in biomedical applications of great interest such as hyperthermia, neuromodulation and the opening of the blood-brain barrier for drug delivery to the brain. / Andrés Bautista, D. (2024). Acoustic Holograms for Hyperthermia and Transcranial Ultrasound [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/205788

Page generated in 0.0762 seconds