• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Transfert énergétique irréversible grâce à un résonateur acoustique à comportement non-linéaire / Irreversible energy transfer using an acoustic resonator with a nonlinear behavior

Alamo Vargas, Valentin 07 September 2018 (has links)
Dans un contexte d’amélioration des dispositifs pour la réduction de bruit, l’étude sur le transfert d’énergie irréversible en utilisant des résonateurs purement acoustiques à comportement non linéaire a été réalisée. Les résonateurs acoustiques classiques en régime linéaire agissent comme un Amortisseur de Masse Accordée (TMD, en anglais) et ils sont efficaces pour une gamme de fréquence très étroite. Cependant, lorsqu’ils sont soumis à des excitations très fortes (régime non-linéaire) ils peuvent devenir efficaces pour une plus large gamme de fréquences si des termes non linéaires peuvent être activés. Dans un premier temps, une étude sur ce comportement non-linéaire d’un résonateur d’Helmholtz modifié a été réalisée expérimentalement. Ensuite, l’équation dynamique gouvernante de tels résonateurs ont été développées en prenant en compte les non-linéarités de la force de rappel et d’amortissement. Une approximation de la solution analytique de l’équation gouvernante du résonateur acoustique a été déterminée en utilisant les méthodes des échelles multiples du temps et de transformation du temps non régulière. Dans un deuxième temps, une étude du couplage entre un mode acoustique en basses fréquences et un résonateur (celui étudié précédemment) à comportement non-linéaire a été réalisée. Pour ce faire, des mesures expérimentales avec un montage du système couplé ont permis de vérifier l’atténuation acoustique produite par le résonateur en régime forcé et libre. Une modélisation analytique du couplage a permis d’identifier l’expression de la variété invariante lente, ce qui a permis d’étudier les possibles points d’équilibre et points singuliers du système. Les modèles analytiques développés ont également été vérifiés par des simulations numériques. / Nowadays, there is a need of new types of technologies for sound reduction because of the growing of different industries. In this context, we have studied the targeted energy transfer using a purely acoustic resonator. These acoustic resonators act, in the linear regime, as a Tuned Masse Damper (TMD) and they are efficient for a narrow frequency band. But, when they are excited with high forces, in the nonlinear regime, they are efficient for a wider frequency band if the nonlinear terms are activated. First, an experimental study about the nonlinear behavior of a modified Helmholtz Resonator was done. Then, the governing equation of such resonators were developed considering the nonlinearities in the restitution force and damping. An approximation of the analytical solution of the governing equation of the acoustical resonator is derived using the multiples scales of time method and the non-smooth time transformation method. In a second part, a study about the coupling between an acoustic mode in low frequencies and a resonator (the one studied in the previous part) with a nonlinear behavior is done. In order to do this, experimental measurements of the coupled system to confirm acoustic attenuation by the resonator in forced and free regime were done. Then, an analytical modelling of the coupled system allowed to derive the expression of the Slow Invariant Manifold (SIM), in order to identify the possible equilibrium points and singular points of the system. Derived analytical models were verified by numerical simulations.
12

Miniaturisation des oscillateurs "OCXO" pour applications spatiales / Miniaturization of "OCXO" oscillators for space applications

Vorobyev, Nikolay 29 November 2016 (has links)
Cette thèse présente le travail effectué sur la conception d’un oscillateur à quartz miniature (volume visé de 1 cm3) con-trôlé en température. Les équipements de télémétrie, poursuite et contrôle tels que ceux utilisés dans les microsatellites (comme Myriades) sont d'un volume très important (8 litres). Des équipements avec un volume 8 fois moindre (1 litre) sont envisagés sur les pico et nano satellites. Une réduction drastique du volume et de la consommation est donc nécessaire, à performances égales. Elle nécessite une remise en question de l'ensemble des éléments composant l'équipement dont le micro-oscillateur, tant au niveau volume qu'au niveau consommation d’énergie. Les études préliminaires ont servi à définir le résonateur adapté pour satisfaire les spécifications de stabilité demandées. La simulation thermique d'un modèle d’oscillateur OCXO (Oven Controlled Xtal Oscillator) a permis d'obtenir une bonne compréhension des transferts de chaleur dans le dispositif. La réduction des pertes thermiques et l'augmentation de la stabilité thermique du résonateur étaient les principaux défis. La dilatation thermique du résonateur entraine des contraintes mécaniques au niveau de ses fixations et décale la fréquence de résonance. Un MEMS en silicium a été conçu pour supporter le résonateur à l’aide de simulations thermomécaniques. Ce support est compatible avec les contraintes de faible con-sommation et de sensibilité thermique tout en gardant une bonne résistance aux chocs. En ce qui concerne l’électronique, une puce ASIC utilisée depuis plusieurs années a été caractérisée pour établir un modèle numérique. Cette étude a dévoilé les facteurs limitants des performances de l’ensemble et permis d’envisager des solutions correctives. En intégrant dans la démarche les coûts de fabrication, l’utilisation d’un ASIC a été écartée (au moins provisoirement) au profit d’une solution exploitant des composants électroniques du commerce. Enfin, un démonstrateur de module physique miniature a été monté et caractérisé. Les résultats de mesures montrent que la consommation du démonstrateur reste inférieure à la spécification demandée (50 mW à une température extérieure de 25°C et à 100 mW pour -40°C). L’importance de la participation du rayonnement dans les échanges thermiques a aussi été validée expérimentalement. / This thesis presents the work on designing a miniature temperature controlled crystal oscillator (required volume is 1 cm3). TTC (Telemetry, Tracking and Control) equipment which is used in microsatellites (as Myriades) has a very important volume (8 liters). 8 times lower volume equipment (1 liter) is planned for pico and nano satellites. Therefore, a significant reduction of volume and consumption for equal performance is necessary. Redesign is required for all components of equipment items including micro-oscillator, as in volume as at the level of energy consumption. Preliminary studies have served to define the resonator adapted to satisfy the request stability specifications. Thermal simulation of an OCXO oscillator model (Oven Con-trolled Xtal Oscillator) has permitted to achieve a good understanding of heat transfer into the device. Reducing heat loss and increases the thermal stability of resonator were major challenges. Thermal expansion of the resonator causes mechanical stresses in its mountings and shifts the resonance frequency. A silicon MEMS has designed for supporting the resonator by using thermo-mechanical simulations. This support is compatible with the constraints of low consumption and heat sensitivity retaining good impact resistance. As regards electronics, an ASIC chip which is used during many years has characterized with the purpose to obtain the digital model. This study has revealed the limiting factors of the oscillator performance. Also it has allowed to provide remedial solutions. The ASIC using was rejected in favor of the solution operating with commercial electronic components (at least temporarily). Finally, a miniature demonstrator of physical module was assembled and characterized. The measuring results show that demonstrator consumption remains below the required specification (50 mW at outside temperature 25°C and 100 mW at -40 ° C). The importance of the participation of radiation within the thermal exchanges has also validated experimentally.

Page generated in 0.0763 seconds