• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 740
  • 421
  • 110
  • 86
  • 49
  • 34
  • 20
  • 18
  • 18
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • Tagged with
  • 1822
  • 627
  • 458
  • 331
  • 279
  • 264
  • 255
  • 219
  • 205
  • 197
  • 184
  • 174
  • 160
  • 152
  • 149
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Sorption studies of the surface modified activated carbon with beta-cyclodextrin

Kwon, Jae Hyuck 12 September 2007 (has links)
Activated Carbon (AC) is an amorphous carbon-based material characterized with a large surface area (~ 1,000 m2/g) and consists primarily of graphitic (sp2 hybrid) layers. Its amphoteric chemical property results because of the chemical treatment of the surface of AC with oxidizing agents, reducing agents, and grafting agents. β-cyclodextrin (β-CD) is a very interesting carbohydrate oligomer that provides very strong binding ability for small organic guest molecules in its inner cavity (6.0 ~ 6.5 Å) by van der Waals interactions and hydrogen bond formation between the guest molecules and the host. <p>Surface modification of AC with β-CD was synthesized by chemical methods: oxidation with HNO3, reduction with LiAlH4, and grafting β-CD onto the surface of AC via organic linkers such as glutaraldehyde and 1,4-phenylene diisocyanate. This surface grafted AC with β-CD, then, was evaluated for its surface area and sorption performance by using a solution dye sorption method using dye adsorbates. <p>Surface functional groups produced from oxidation (carboxylic acid, lactone, quinine, phenol, and nitro groups), reduction (alcohol and amine groups), and grafting (imine, hemiacetal, and urethane bonds) methods including microscopy of untreated, surface modified, and grafted ACs were characterized by various surface characterization methods: Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS), Scanning Electron Microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA), Differential thermogravimetry (DTG), Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI TOF MS), and Electron spin resonance (ESR) spectroscopy. A chemical method, the Boehm method, was used for identifying surface bound acidic and basic functional groups. Nitrogen porosimetry was used to analyze the surface area and pore structure characteristics of AC, surface modified ACs, and grafted ACs. <p>p-nitrophenol (PNP) and methylene blue (MB) were used as adsorbates for the dye sorption method. PNP and MB were used to measure the sorption performance of grafted ACs at equilibrium using UV-vis spectrophotometry in aqueous solution. Sorption capacity (Qe), surface area (m2/g), and binding affinity characteristics [KF (L/g), KL (g/mol), and KBET (L/g)] were determined at equilibrium conditions using fundamental sorption models such as Langmuir, Freundlich, and BET isotherms. The sorption performance of grafted ACs and granular AC were different according to the difference in surface area and pore structure characteristics of each material.
92

Production of activated carbon and its catalytic application for oxidation of hydrogen sulphide

Azargohar, Ramin 20 April 2009 (has links)
Hydrogen sulphide is an environmentally hazardous gas which is present in many gas streams associated with oil and gas industry. Oxidation of H2S to sulphur in air produces no bulky or waste material and requires no further purification. Activated carbon is known as a catalyst for this reaction.<p> In this research, a coal-based precursor (luscar char) and a biomass-based precursor (biochar) were used for production of activated carbons by two common methods of activation: physical and chemical activation in which steam and potassium hydroxide (KOH), respectively, were used. Experiments were designed by the statistical central composite design method. Two models were developed for the BET surface area and reaction yield of each activation process. These models showed the effects of operating conditions, such as activation temperature, mass ratio of activating agent to precursor, activation time, and nitrogen flowrate on the BET surface area and reaction yield for each activation method for each precursor. The optimum operating conditions were calculated using these models to produce activated carbons with relatively large BET surface area (> 500 m2/g) and high reaction yield (> 50 wt %). The BET surface area and reaction yield for activated carbons produced at optimum operating conditions showed maximum 7 and 7.4 % difference, respectively, comparing to the values predicted by models.<p> The activated carbons produced at optimum operating conditions were used as the base catalysts for the direct oxidation of 1 mol % hydrogen sulphide in nitrogen to sulphur at the temperature range of 160-205 oC and pressure of 700 kPa. Originally activated carbons showed a good potential for oxidation of hydrogen sulphide by their selectivity for sulphur product and low amount of sulphur dioxide production. To improve the performance of steam-activated carbons, the catalysts were modified by acid-treatment followed by thermal desorption. This method increased the break-through times for coal-based and biomass-based catalysts to 115 and 141 minutes, respectively. The average amounts of sulphur dioxide produced during the reaction time were 0.14 and 0.03 % (as % of hydrogen sulphide fed to the reactor) for modified activated carbons prepared from biochar and luscar char, respectively. The effects of porous structure, surface chemistry, and ash content on the performances of these activated carbon catalysts were investigated for the direct oxidation reaction of hydrogen sulphide.<p> The acid-treatment followed by thermal desorption of activated carbons developed the porosity which produced more surface area for active sites and in addition, provided more space for sulphur product storage resulting in higher life time for catalyst. Boehm titration and temperature program desorption showed that the modification method increased basic character of carbon surface after thermal desorption in comparison to acid-treated sample. In addition, the effects of impregnating agents (potassium iodide and manganese nitrate) and two solvents for impregnation process were studied on the performance of the activated carbon catalysts for the direct oxidation of H2S to sulphur.<p> Sulphur L-edge X-ray near edge structure (XANES) showed that the elemental sulphur was the dominant sulphur species in the product. The kinetic study for oxidation reaction of H2S over LusAC-O-D(650) was performed for temperature range of 160-190 oC, oxygen to hydrogen sulphide molar ratio of 1-3, and H2S concentration of 6000-10000 ppm at 200 kPa. The values of activation energy were 26.6 and 29.3 kJ.gmol-1 for Eley-Rideal and Langmuir-Hinshelwood mechanisms, respectively.
93

Design of Photocage Ligands for Light-Activated Changes in Coordination of d-block Transition Metals

Ciesienski, Katie Lynnann January 2010 (has links)
<p>The concept of light-activated "caged" metal ions was first introduced for Ca2+. These high affinity coordination complexes are activated by UV light to release calcium ions intracellularly and have found widespread use in understanding the many roles of calcium in biological processes. There is an unmet need for photocaging ligands for biologically relevant transition metal ions. Described here are the first examples of uncaging biologically important d-block metal ions using photoactive ligands. </p> <p>New nitrogen-donor ligands that contain a photoactive nitrophenyl group within the backbone have been prepared and evaluated for their metal binding affinity. Exposure of buffered aqueous solutions of apo-cage or metal-bound cage to UV light induces cleavage of the ligand backbone reducing the denticity of the ligands. Characterization of several caging compounds reveals that quantum efficiency and metal binding affinity can be tuned by modifications to the parent structure. The change in reactivity of caged vs. uncaged metal for promoting hydroxyl radical formation was demonstrated using the in vitro deoxyribose assay. The function of several of these compounds in vivo pre- and post-photolysis has been validated using MCF-7 cells. This strategy of caging transition metals ions is promising for applications where light can trigger the release of metal ions intracellularly to study metal trafficking and distribution, as well as, selectively impose oxidative stress and/or metal toxicity on malignant cells causing their demise.</p> / Dissertation
94

Oxidation of DMS (Dimethyl Sulfide) in Waste Gases by Chlorine Oxidation Followed by Activated Carbon Reductive Adsorption

Chen, Chi-Hsien 08 August 2012 (has links)
Optical-electrical, rendering, paper-making, and sewage treatment plants emit odorous waste gases containing dimethyl sulfide (DMS) as one of the major odorous compounds. For the protection of ambient air quality and prevention of odor complaints, DMS should be eliminated from the gases before venting them into the atmosphere. This study aimed to develop a process for eliminating DMS in the waste gases by introducing an enough amount of chlorine gas to oxidize DMS therein to non-odorous dimethyl sulfone (DMSO2). The vented gas from the oxidation step is then contacted with a bed of granular activated carbon (GAC) to convert the residual chlorine to GAC-adsorbed hydrochloric acid and get a nearly odor-free gas. Both lab-scale and field tests were performed in this study. Results from the lab test indicate that the GAC had only an equilibrium DMS adsorption capacity of 4.30 mg/g GAC with 15-30 ppm DMS and no chlorine in the test gas. With an empty-bed gas-GAC contact time (EBCT) of around 0.49 s and no DMS in the test gas, 42 ppm gaseous chlorine could completely be reduced to HCl and the reduction product adsorbed to the GAC. The GAC had a minimum chlorine elimination capacity of around 110 mg/g GAC. Lab tests also indicate that with a molar Cl2/DMS ratio (R) of around 0.9 and a gas-phase reaction time of 5 s, and an EBCT of 0.58 s, the influent 22 ppm DMS could be removed to below detectable limits. Results from field tests in an optical-electrical wastewater plant show that by the developed process, < 1 ppm DMS in the plant¡¦s waste gas could be treated to an odor-free degree with a chlorine dose of 4-10 ppm.
95

Perchlorate ion (C104) removal using an electrochemically induced catalytic reaction on modified activated carbon

Langille, Meredith Caitlyn 15 May 2009 (has links)
Perchlorate is known to adversely affect the thyroid gland functions including iodide take up, thus perchlorate should be removed from drinking water. Bituminous coal-based activated carbon (AC) has been used for perchlorate removal in past years. Virgin carbon and carbon modified by oxidation with HNO3, NaOH and H2O2 were examined in this study for their ability to remove perchlorate by reduction or adsorption mechanisms. Surface functional groups formed on the modified AC (MAC) were examined with diffuse reflectance infrared spectrometry. Inhibition of perchlorate removal onto MAC by various anions ( - Cl , - 3 NO , and - 2 4 SO ) and solution pH (4.5, 7.2 and 10.5) were examined to characterize the MACs before an electrochemical reaction was performed. Surface functional groups were increased by oxidation. Groups that were found on the carbon include, but are not limited to lactone, quinine, carboxylate, and nitrogenoxygen groups. The effect of pH on removal of perchlorate by MAC was greatly affected by the change in the zero point charge (ZPC) induced on the carbon by modification. Virgin carbon also experienced difficulty in removing perchlorate when solution pH was above the ZPC. Anion inhibition varied with the modification process. - 3 NO inhibited perchlorate removal only by the virgin carbon. The other anions showed no major effects on the removal efficiency of perchlorate by the carbons. Electrochemical processes did not show favorable results in removal of perchlorate. The dominant mechanism of perchlorate removal during desorption tests was adsorption onto the carbon surfaces via ion exchange.
96

Adsorption interactions of s-triazine herbicides and natural organic matter by activated carbon /

Leung, Kevin Shurch-Yee, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 317-329). Also available on the Internet.
97

Adsorptive removal of nitrogen from coal-based needle coke feedstocks using activated carbon

Madala, Sreeja. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains viii, 64 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 62-64).
98

Adsorption interactions of s-triazine herbicides and natural organic matter by activated carbon

Leung, Kevin Shurch-Yee, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 317-329). Also available on the Internet.
99

Catalytic destruction of monochloramine using granular activated carbon for point of use applications

Cherasia, Eric Charles 29 October 2013 (has links)
Chloramines are used for disinfection in many water treatment facilities because of their ability to provide residual protection of water supplies while minimizing the formation of disinfection-by-products. However, chloramines can impart taste and odor to the water, which can lead to customer complaints. Furthermore, the removal of monochloramine from water is essential for certain industries. Previous research at the University of Texas at Austin has demonstrated the potential of several granular activated carbons (GAC) for removal of monochloramine under conditions typical of water treatment plants. The goal of this research project is to further quantify steady-state monochloramine reduction in fixed bed reactors (FBR) with three commercially available GACs, and improve the understanding of the physical and chemical properties that influence removal. The research was divided into 3 phases: 1. A laboratory scale fixed bed reactor experiment was used to quantify steady state monochloramine removal over time. City of Austin tap water viii was used for three GAC types (Jacobi CAT, Norit CAT, Nority CNS) at pH 8 and 9. 2. Physical characterization of each GAC was performed using analysis of nitrogen adsorption isotherms. Specific surface area, pore volume, and pore distribution were determined. Chemical characterization was performed quantitatively using Boehm titrations. Qualitative analysis was performed by analyzing FTIR spectra of untreated activated carbon samples. 3. The Monochloramine Catalysis (MCAT) model was calibrated using results from the Phase 1 and 2 experiments. Simulations of full scale point of use drinking water filters were run for various empty bed contact times and influent monochloramine concentrations. These results were compared against National Sanitation Foundation monochloramine reduction certification criteria. Results show that steady state removal was achieved for all of the activated carbons tested and this removal efficiency can reach nearly 90% using a 0.75-minute empty bed contact time. This steady state performance indicated that catalysis of the monochloramine was occurring, and removal could theoretically occur for very long periods of time. The second stage of the research shows correlation between chemical characteristics (acidity and basicity) and removal efficiency. Furthermore, physical characteristics, mainly micro-porosity, were shown to largely impact performance. Finally, the MCAT model provides a reasonable estimate of steady state removal, and is used to predict full scale point of use performance. / text
100

Role of mitogen-activated protein kinases in vascular relaxation in porcine coronary arteries

Chiu, Tsz-ling, 趙芷菱 January 2014 (has links)
Background: Regulation of vascular tone is complex. Various complementary signaling pathways causing contraction and relaxation of vascular smooth muscle take place to ensure proper blood flow within the vasculature. Mitogen activated protein kinase (MAPK) signaling cascade is observed to be one of the many signaling pathways that regulate vascular tone. Aim: This study examines the role of the following MAPK: mitogen-activated extracellular-regulated protein kinase kinase (MEK), extracellular signal-regulated kinase (ERK), and p38 MAPK in the regulation of relaxation in the endothelium and smooth muscle. Method: Isometric tension of isolated porcine coronary artery rings were measured with organ chamber setup. The effects of MEK inhibitor, PD98059 (30 μM), ERK inhibitor, U0126 (10 μM) and p38 MAPK inhibitor, SB203580 (10 μM), on relaxations induced by bradykinin (a vasodilating peptide), SKA-31 [an activator of small and intermediate conductance calcium-activated potassium channels (SKCa and IKCa,, respectively)], Deta NONOate (a nitric oxide donor) and forskolin (an adenylate cyclase activator) were examined in arteries with and without endothelium, contracted with an thromboxane A2 analog, U46619 (300 nM – 1 μM). In some experiments, rings were also incubated with the following pharmacological inhibitors, indomethacin (cyclooxygenase inhibitor, 10 μM), L-NAME (nitric oxide synthase inhibitor, 300 μM), TRAM34 (IKCa blocker, 1 μM), and UCL1684 (SKCa blocker, 1 μM), alone or in combination. Results: 1. Bradykinin-induced relaxation was potentiated by MEK and ERK inhibition but not by p38 MAPK inhibition. 2. SKA-31-induced relaxation was potentiated by MEK and p38 MAPK inhibition but not by ERK inhibition. 3. Deta NONOate-induced relaxation was potentiated by MEK, p38 MAPK inhibition, but not by ERK inhibition except in the presence of indomethacin, TRAM-34 plus UCL1684. 4. Forskolin-induced relaxation was potentiated by MEK and p38 MAPK inhibition, but not by ERK inhibition. Discussion: MAPK plays a role in regulating the vascular tone in both the endothelium and smooth muscle of porcine coronary arteries. MEK appears to have an inhibitory action on relaxation that is downstream of the generation of endothelium-derived nitric oxide, activation of IKCa and SKCa and activation of adenylate cyclase. ERK are unlikely to be the downstream target of MEK for inhibiting relaxation, in view of the lack of effects of its inhibitor on endothelium-derived hyperpolarizing factor (EDHF)-mediated and endothelium-independent relaxations. The involvement of ERK in relaxation pathways in the endothelium appears to be complicated, since U0126 caused opposing effects (inhibition and potentiation) on bradykinin-induced relaxation in the presence of indomethacin without and with L-NAME or TRAM-34 plus UCL1684. As inhibition of p38 MAPK results in potentiation of relaxations to all relaxing agents tested except bradykinin, this MAPK may have opposing action in the endothelium and smooth muscle; endothelial p38 MAPK may facilitate relaxation while smooth muscle p38 MAPK attenuates it. In conclusion, this study provided additional information on the influences of MEK, ERK and p38 MAPK on relaxation; this knowledge may contribute to the understanding of the mechanisms underlying the development of vascular disorders. / published_or_final_version / Pharmacology and Pharmacy / Master / Master of Medical Sciences

Page generated in 0.0503 seconds