• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Realization of an Adjustable Fluid Powered Piston for an Active Air Spring

Hedrich, Philipp, Johe, Maik, Pelz, Peter F. 28 April 2016 (has links) (PDF)
In this paper, we present a new compact hydraulic linear actuator. The concept is developed to change the rolling piston diameter of an active air spring during usage. By doing so, the air spring can actively apply pressure and tension forces. The actuator is designed for small movements at high forces. It is insensitive to side forces, which are introduced by the bellows rolling on the rolling piston of the air spring. A diaphragm sealing is used to minimize friction. Hence a precise adjustment of small displacements at high dynamics is possible and the system is completely leakage-free. We describe the design and development of this actuator and show first measurement results from preliminary tests to show its functionality.
2

Design and Realization of an Adjustable Fluid Powered Piston for an Active Air Spring

Hedrich, Philipp, Johe, Maik, Pelz, Peter F. January 2016 (has links)
In this paper, we present a new compact hydraulic linear actuator. The concept is developed to change the rolling piston diameter of an active air spring during usage. By doing so, the air spring can actively apply pressure and tension forces. The actuator is designed for small movements at high forces. It is insensitive to side forces, which are introduced by the bellows rolling on the rolling piston of the air spring. A diaphragm sealing is used to minimize friction. Hence a precise adjustment of small displacements at high dynamics is possible and the system is completely leakage-free. We describe the design and development of this actuator and show first measurement results from preliminary tests to show its functionality.

Page generated in 0.068 seconds