• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Viable Orbital Debris Mitigation Mission using Active Debris Removal

Smeltzer, Stanley Logan 28 June 2023 (has links)
Currently, the Low Earth Orbit (LEO) space environment contains a growing number of orbital debris objects. This growing orbital debris population increases collision probabilities between both orbital debris and functioning satellites. A phenomenon known as Kessler Syndrome can be induced if these collisions occur. Kessler Syndrome states that these collisions can lead to an exponential increase in the orbital debris population, which could dangerously impede future space missions. Current literature outlines the necessity of stabilizing the near-Earth environment debris population and introduces the concept of active debris removal (ADR). The use of ADR on five orbital debris objects per year was found to be a requirement to achieve stability within the orbital debris population. A viable mission architecture is henceforth explored to utilize ADR for near-future execution to further develop research for orbital debris mitigation missions. The larger orbital debris objects are found in many different orbital regimes and are primarily composed of spent rocket bodies and retired satellites. Different orbital debris ranking schemes have been developed based on the population density in these different regimes, which are linked to higher collision probabilities. Using these ranking schemes, a set of target objects are selected to be investigated for this mission design that was composed of target objects with similar orbital characteristics that were not launched by the Commonwealth of Independent States (CIS) to minimize legal barriers. Different ADR capture and removal methods are inspected to find the optimal methods for this mission. An Analytical Hierarchy Process (AHP) has been used to assess these different methods, which utilizes comparisons of the different methods among a set of weighted criteria. A net capture method with a low thrust chemical engine for removal is identified as the optimal ADR method. The use of a laser detumbling system is also selected to stabilize target objects with a high rotation rate. A rendezvous and deorbit orbital analysis are conducted using both a low fidelity tool (for preliminary results) and a high fidelity tool (for more precise results). The rendezvous analysis is used to select a mission architecture that was composed of two different chaser satellites which rendezvous with the five different target objects by taking advantage of nodal precession. The deorbit analysis investigates different decay timelines and found the delta-v estimates that would be required to deorbit the target objects within the same year that they were captured in. These two orbital analyses provide valuable insight to the mission timeline, delta-v estimates, and approximate mass requirement for the chaser satellite and deorbit kits. The results of the target selection process, ADR selection process, and the rendezvous and deorbit analyses are meant to provide an initial concept and analysis for a near-future ADR mission. These approximate results provide insight and information to further develop orbital debris mitigation research to help solve the orbital debris population growth challenge for future space missions. / Master of Science / Currently, the near Earth space environment contains a growing number of space debris. This growth in the orbital debris population increases the likelihood of collisions with orbital debris, functioning satellites, and launch vehicles. These collisions can generate a chain of events that could exponentially increase the population of orbital debris, which at some scale could become a major obstacle for future space missions. Researchers have introduced the concept of active debris removal (ADR), which in simulations has been shown to help stabilize the growth of orbital debris. The use of ADR to remove as low as five orbital debris objects per year has been found to be sufficient to stabilize debris growth. A viable mission architecture using ADR technologies that can be implemented in the near future is henceforth explored to further develop research for orbital debris missions. The larger orbital debris objects are found in many different areas in space and are primarily made up of used rocket bodies and retired satellites. Different ranking schemes have been developed by researchers for these larger orbital debris objects based on the population density within these areas in space, which are linked to the chance of a collision. Using these ranking schemes, a set of orbital debris objects are selected to be targeted for this mission design. This set of selected target objects have similar orbital characteristics and the political/legal barriers that could be present during removal are minimal. An ADR mission is composed of two primary components, a capture method and a removal method, which are inspected to find the optimal methods for this mission. A decision-making technique, called an Analytical Hierarchy Process (AHP), has been used to assess these different methods. The AHP compares different capture and removal methods using a set of weighted criteria. A net capture method with small thrusters for removal is identified as the optimal ADR method. Additionally, the use of a laser system is selected to stabilize target objects that may be rotating too quickly for capture. An analysis on different mission architectures is conducted using both a low fidelity tool (for preliminary results) and a high fidelity tool (for more precise results). A mission architecture composed of two different "chaser" satellites which rendezvous with and deorbit the five different target objects is selected. The analysis used on the selected mission architecture provides valuable insight to the mission timeline, fuel estimates, and approximate mass requirements. The results of the target selection process, ADR selection process, and the mission architecture analysis are meant to provide an initial concept and introduce possible requirements for a nearfuture ADR mission. These approximate results provide information to further develop research that can help us solve the orbital debris population growth challenge for future space missions.
2

Současné výzvy odstraňování vesmírného odpadu: souhrn a perspektiva / Contemporary Challenges of Space Debris Removal: Overview and Outlook

Vojáková, Eliška January 2021 (has links)
CHARLES UNIVERSITY FACULTY OF SOCIAL SCIENCES Institute of Political Studies Department of International Security Studies Contemporary Challenges of Space Debris Removal: Overview and Outlook Abstract in English Author: Eliška Vojáková Study programme: Security Studies Supervisor: Mgr. Bohumil Doboš, Ph.D. Year of the defence: 2021 Abstract The sustainability of the outer space environment is necessary for all actors to execute all existing and future human space operations safely. While the severe negative consequences of the uncontrolled space debris population are not new, government agencies and intergovernmental organizations' initiatives to lessen the predicament continue to be insufficient. Scientific research and simulation models show that mere mitigation measures cannot stop the ongoing degradation of the outer space environment polluted from the past space missions. Instead, research supports the development of space projects designed with a primary objective to remove debris from space. National administrations attempt to cooperate at the international level to formulate uniform debris mitigation standards and hold each other mutually accountable for worsening the space debris situation. However, joint public international missions to actively remove debris remain unthinkable. The privatization...

Page generated in 0.0656 seconds