1 |
Active and Passive Mixing for Immiscible Liquid-Liquid Systems: A Performance Evaluation of Novel Micro-ReactorsMongeon, Sébastien January 2018 (has links)
Continuous flow reaction using micro-reactors is a valued technology due to its excellent mass and heat transfer performance, reduced reactor volume, handling capacity of hazardous reactions, and many other process intensifications. These intensifications opportunities interest the fine chemicals, pharmaceuticals producers and other multiphase reaction users who currently use batch processes or already use continuous flow. In this thesis, elements of passive and active mixing are investigated for the application of immiscible liquid-liquid systems.
In the first study, the effects of geometrical arrangements of a residence time between mixing units on the interphase mass transfer rates are evaluated with four different immiscible liquid-liquid systems. A presentation of an algorithm for the optimal selection of a reactor and its operating conditions is given in order to enable easy and improved use of one’s micro-reactor.
In the second study, the impact of a secondary pulse flow on interphase mass transfer is investigated. A coil without internal baffles is used as the oscillatory-flow coil reactor with a continuous active mixing source. The best application for the reactor is determined using a comparison to other complementary continuous flow platforms in the toolbox approach.
The novel advancements presented here will help lead new molecular discoveries and connect the laboratory science scale to the process engineering production scale.
|
2 |
Návrh mikrofluidického směšovače / Design of microfluidic mixerAbrahám, Martin January 2016 (has links)
Microfluidic devices are more frequently being used in medicine as they operate with small amounts of test samples, such as blood or reagent chemicals. To work with such substances, effective mixing of the solution is usually required, which emerged as the most challenging problem in microfluidic systems. Due to the minor dimensions of the devices only laminar flow occurs, thus the turbulent eddies do not contribute to the mixing, but only the molecular diffusivity.
|
Page generated in 0.0504 seconds