• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PREPARATION AND EVALUATION OF PEPTIDYL ACYLOXYMETHYL KETONES FOR CATHEPSIN B IMAGING

Edem, Patricia 10 1900 (has links)
<p>This thesis describes the initial steps towards the use of dipeptidyl acyloxymethyl ketones as a platform to develop molecular imaging (MI) probes for cancer. Initially the synthesis of an AOMK was performed following a literature procedure which resulted in an epimerized product. This issue was addressed by optimizing an alternative method yielding all intermediates in yields similar or better to those reported in the literature (final product yield of 67%). An AOMK derivative that can be used to evaluate target expression levels was synthesized by linking a fluorescent dye to the ε-amine group of lysine in accordance to a literature procedure describing the synthesis of an optical imaging probe in 24% yield. A second generation derivative AOMK was prepared by linking 4-fluoro-benzoic acid to the same amino group yielding a model of a PET MI probe.</p> <p>An endpoint colorimetric assay was developed and optimized to test cathepsin B inhibitors. Due to the fact that the AOMKs exhibit time-dependent inhibition these assay conditions did not prove to be adequate for the assessment of the cathepsin B binding. Steps toward developing a continuous assay that would be better suited for these compounds were achieved. Factors such as the relationship between the formation of the assay product vs enzyme concentration and determination of the Michelis-Menten constant (K<sub>m</sub> = 390 ± 30 nM) were established. These parameters can be used to determine the optimal enzyme and substrate concentration that should be used to test the AOMK based probes.</p> / Master of Science (MSc)

Page generated in 0.0457 seconds